用户名: 密码: 验证码:
英国散裂中子源工程材料原位加载衍射实验高温样品环境优化设计
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:High temperature sample environment upgrade of ISIS engineering materials in-situ diffraction experiment
  • 作者:詹霞 ; Joe ; Kelleher ; 高建波 ; 马艳玲 ; 初铭强 ; 张书彦 ; 张鹏 ; Sanjooram ; Paddea ; 贡志锋 ; 侯晓东
  • 英文作者:Zhan Xia;Joe Kelleher;Gao Jian-Bo;Ma Yan-Ling;Chu Ming-Qiang;Zhang Shu-Yan;Zhang Peng;Sanjooram Paddea;Gong Zhi-Feng;Hou Xiao-Dong;Centre of Excellence for Advanced Materials;Songshan Lake Laboratory for Materials Science;ISIS Neutron and Muon Source;Shanghai Aircraft Manufacturing Co.,Ltd;Materials Engineering Department, Open University;Research Institute for Future Transport & Cities, Coventry University;
  • 关键词:散裂中子源 ; 原位实验 ; 样品环境 ; 高温炉
  • 英文关键词:ISIS;;in-situ experiment;;sample environment;;high temperature furnace
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:东莞材料基因高等理工研究院;松山湖材料实验室;英国散裂中子源;中国商飞上海飞机制造有限公司;英国公开大学材料工程学院;英国考文垂大学未来运输与城市研究所;
  • 出版日期:2019-07-08
  • 出版单位:物理学报
  • 年:2019
  • 期:v.68
  • 基金:广东省引进创新创业团队项目(批准号:2016ZT06G025)资助的课题~~
  • 语种:中文;
  • 页:WLXB201913009
  • 页数:8
  • CN:13
  • ISSN:11-1958/O4
  • 分类号:93-100
摘要
英国散裂中子源(ISIS)在工程材料中子衍射领域有着十余年丰富的研究经验,最为典型的衍射谱仪之一的Engin-X在材料、加工等方向有着广泛应用,包括残余应力分布测量、金属相变分析、微观力学研究等.Engin-X通过设置红外加热型高温炉配套材料试验机的样品环境以实现中子衍射原位高温力学实验,目前原位实验中高温炉最高设计温度可达1100℃.通过优化高温炉反射罩形状、布局、反射涂层,以及合理设置反射挡板等措施(例如采用一种椭圆-圆组合形状的反射罩),可实现更优的光线聚焦效果.模拟计算得知样品的能量吸收可提高109%以上,最终高温可达1400℃.相关研究有望拓展Engin-X中子衍射技术在材料研究领域的应用,同时也为中国散裂中子源(CSNS)工程材料衍射谱仪样品环境设计提供借鉴经验.
        The ISIS Neutron Facility of Rutherford Appleton Laboratory(RAL) in the UK plays an important and world leading role in in-situ engineering materials testing, one of the most typical neutron diffractometers known as Engin-X, used to measure residual stress and phase transformation and to do micromechanics research, through using different sample environment equipment, such as mechanical fatigue loading frame,cryogenic temperature furnace of cooling the sample down to 1.5 K and particularly high temperature furnace of heating the sample up to 1100 ℃ under loading condition. The present maximum heating capability of the Engin-X high temperature furnace at ISIS can be increased to above 1100 ℃, that would allow more extremely challenging high temperature engineering problems around the world to be investigated. With this ambition in mind, in this paper we use Trace Pro software initially to optimize the geometry of the present Engin-X furnace reflectors and their configurations' arrangement. One is to use ellipse-sphere combination and the other is to use ellipse-sphere-ellipse combination to replace the present Engin-X high temperature furnace's half ellipse reflector geometry. The results show that the former plus further reflector surface coating and reasonable side shielding arrangement result in a total increase of 109% of energy absorption by the sample. The latter makes a further 6% of increase of energy absorption by the sample. Such results are further checked by subsequent ANSYS thermal analysis to investigate the temperature distributions within the centre portion of the sample. The ANSYS simulation results further reveal that both the ellipse-sphere and ellipse-sphere-ellipse configurations are able to increase the maximum capability of the Engin-X high temperature furnace at ISIS from the present 1100 ℃ to 1399 ℃ and 1423 ℃, respectively. In this paper, we present the details of the simulations and all the configurations of the Engin-X high temperature furnace.
引文
[1]Makowska M G, Kuhn L T, Cleemann L N, Lauridsen E M,Bilheux H Z, Molaison J J, Santodonato L J, Tremsin A S,Grosse M, Morgano M, Kabra S, Strobl M 2015 Rev. Sci.Instrum. 86 125109
    [2]Danilewsky A, Wittge J, Hess A, Croll A, Allen D, Mcnally P, Vagovic P, Cecilia A, Li Z, Baumbach T, GorosteguiColinas E, Elizalde M R 2010 Nucl. Instrum. Methods B 268399
    [3]Lee E H, Hwang J S, Lee C W, Yang D Y, Yang W H 2014J. Mater. Process. Technol. 214 784
    [4]Eyer A, Nitsche R, Zimmermann H 1979 J. Cryst. Growth 47219
    [5]Lorenz G, Neder R B, Marxreiter J, Frey F, Schneider J 1993J. Appl. Cryst. 26 632
    [6]Sarin P, Yoon W, Jurkschat K, Zschack P, Kriven W M 2006Rev. Sci. Instrum. 77 093906
    [7]Haboub A, Bale H A, Nasiatka J R, Cox B N, Marshall D B,Ritchie R O, Mac Dowell A A 2014 Rev. Sci. Instrum. 85083702
    [8]英国散裂中子源官网https://www.isis.stfc.ac.uk/Pages/ENGINX-Furnace.aspx[2018-12-29]
    [9]Haynes R, Paradowska A M, Chowdhury M A H, Goodway C M, Done R, Kirichek O, Oliver E C 2012 Meas. Sci. Technol.23 047002
    [10]Paradowska A M, Baczmansk A, Zhang S Y, Rao A,Bouchard P J, Kelleher J 2011 161st Iron and Steel Institute of Japan Meeting Tokyo, Japan, March 25-27, 2011, p539
    [11]Bourke M A M, Dunand D C, Ustundag E 2002 Appl. Phys.A 74 S1707
    [12]洛斯阿拉莫斯国家实验室官网https://lansce.lanl.gov/facilities/lujan/instruments/smarts/index.php[2018–12–29]
    [13]日本散裂中子源官网https://j-parc.jp/researcher/Mat Life/en/se/bl19.html[2018–12–29]
    [14]Harjo S, Ito T, Aizawa K, Arima H, Abe J, Moriai A,Iwahashi T, Kamiyama T 2011 Mater. Sci. Forum 681 443
    [15]Santisteban J R, Daymond M R, James J A, Edwards L 2006J. Appl. Crystallogr. 39 812
    [16][PRECISION CONTROL SYSTEMS公司官网http://www.pcscontrols.com/[2018–12–29]]
    [17]Kang W M 2015 CN201510009283
    [18]Optical Properties of Metals, Hass G https://web.mit.edu/8.13/8.13c/references-fall/aip/aip-handbook-section6g.pdf[2019-3-20]
    [19]Sadao A 2012 The Handbook on Optical Constants of Metals(Vol. 1)(Singapore:World Scientific Publishing Co. Pte.Ltd.)p68
    [20]Zhang F B, Bian J, Du L X, Wang G D, Liu X H 2006 Heat Treat. Met. 31 89(in Chinese)[张福波,边军,杜林秀,王国栋,刘相华2006金属热处理31 89]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700