用户名: 密码: 验证码:
过量氘新的定义及其在极地地区的应用综述
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:NEW DEFINITION OF DEUTERIUM EXCESS AND ITS APPLICATION IN POLAR REGIONS
  • 作者:王佳佳 ; 庞洪喜 ; 侯书贵 ; 张王滨 ; 于金海 ; 刘科
  • 英文作者:Wang Jiajia;Pang Hongxi;Hou Shugui;Zhang Wangbin;Yu Jinhai;Liu Ke;School of Geography and Ocean Science, Nanjing University;
  • 关键词:极地 ; 水稳定同位素 ; 过量氘 ; 水汽来源
  • 英文关键词:polar regions;;water stable isotopes;;deuterium excess;;moisture source
  • 中文刊名:JDYZ
  • 英文刊名:Chinese Journal of Polar Research
  • 机构:南京大学地理与海洋科学学院;
  • 出版日期:2019-06-11
  • 出版单位:极地研究
  • 年:2019
  • 期:v.31
  • 基金:国家自然科学基金项目(41622605,41771031)资助
  • 语种:中文;
  • 页:JDYZ201902010
  • 页数:11
  • CN:02
  • ISSN:31-1744/P
  • 分类号:97-107
摘要
水汽中过量氘主要受蒸发过程中非平衡动力分馏控制,而水汽冷凝过程一般认为同位素发生平衡分馏,平衡分馏过程对降水及水汽中过量氘影响较小,因此理论上可以利用冰芯过量氘记录进行水汽源区环境条件的定量重建。在极地地区,较低的温度导致水汽的冷凝程度较高,氢(δD)与氧(δ~(18)O)稳定同位素的斜率受与温度有关的平衡分馏系数显著影响,因此极地降水中过量氘实际上还受平衡分馏系数影响;此外,随着水汽冷凝程度的升高,水汽中δD/δ~(18)O值越来越低,δD和δ~(18)O之间的非线性关系越来越明显,这导致传统线性过量氘(定义为d_(excess)=δD-8δ~(18)O)的值还受同位素值本身的影响。因此,上述线性过量氘定义的不足使得利用极地冰芯过量氘记录进行水汽源区环境条件定量重建的精度受到了很大的限制。为了弥补传统线性过量氘定义的不足,近年来一些研究者提出了过量氘的对数定义和指数定义。本文旨在说明传统线性过量氘定义的不足,详细介绍两种过量氘新定义的基本原理与优势、最新研究进展及其在极地地区的应用前景。
        The deuterium excess in water vapor is mainly controlled by non-equilibrium kinetic fractionation during evaporation, while it is generally considered that isotopic equilibrium fractionation occurs during condensation, which has little effect on the deuterium excess in precipitation and water vapor. Therefore, the deuterium excess records of ice cores can be used for quantitative reconstruction of environmental conditions of oceanic moisture sources. In polar regions, the condensation degree of water vapor is higher due to the lower temperatures. The slope of δD and δ~(18) O during the condensation of water vapor is significantly affected by the equilibrium fractionation coefficient related to temperature; thus, the deuterium excess in polar precipitation is actually affected by the equilibrium fractionation coefficient. In addition, with an increase of the condensation degree of water vapor, the δD/δ~(18) O value of water vapor becomes progressively lower, and a nonlinear relationship between δD and δ~(18) O becomes more apparent. This means that the traditional linear deuterium excess(defined as: d_(excess) = δD – 8δ~(18) O) is also affected by the isotopic value. Consequently, the deficiency of the definition of linear deuterium excess limits the accuracy of quantitative reconstruction of the environmental conditions of oceanic moisture sources. To make up for deficiency in the linear definition, some researchers in recent years have put forward logarithmic and exponential definitions of deuterium excess. This article highlights shortcomings in the traditional linear definition of deuterium excess, introduces the basic principles and advantages of two new definitions, and discusses the progress of research on this topic as well as potential applications to research in polar regions.
引文
1 STEEN-LARSEN H C,RISI C,WERNER M,et al.Evaluating the skills of isotope-enabled general circulation models against in situ atmospheric water vapor isotope observations[J].Journal of Geophysical Research:Atmospheres,2017,122(1):246-263.
    2 NOONE D,GALEWSKY J,SHARP Z D,et al.Properties of air mass mixing and humidity in the subtropics from measurements of the D/H isotope ratio of water vapor at the Mauna Loa Observatory[J].Journal of Geophysical Research Atmospheres,2011,116(D22):898-908.
    3 STURM C,ZHANG Q,NOONE D.An introduction to stable water isotopes in climate models:benefits of forward proxy modelling for paleoclimatology[J].Climate of the Past,2010,6(1):115-129.
    4王学界,章新平,张婉君,等.全球降水中氢氧稳定同位素GCM模拟空间分布的比较[J].地球科学进展,2017,32(9):983·995.
    5胡家权,庞洪喜.低温冷阱大气水汽收集技术及其在水稳定同位素研究中的应用[J].极地研究,2018,30(2):210·219.
    6 STEEN-LARSEN H C,MASSON-DELMOTTE V,HIRABAYASHI M,et al.What controls the isotopic composition of Greenland surface snow?[J].Climate of the Past,2014,10(1):377-392.
    7 CRAIG H.Isotopic variations in meteoric waters.Science,1961,133(3465):1702-1703.
    8 DANSGAARD,W.Stable isotopes in precipitation,Tellus,1964,16(4),436-468.
    9 MERLIVAT L,JOUZEL J.Global climatic interpretation of the deuterium-oxygen 18 relationship for precipitation[J].Journal of Geophysical Research:Oceans,1979,84(C8):5029-5033.
    10 BENETTI M,REVERDIN G,PIERRE C,et al.Deuterium excess in marine water vapor:Dependency on relative humidity and surface wind speed during evaporation[J].Journal of Geophysical Research:Atmospheres,2014,119(2):584-593.
    11侯浩,侯书贵,庞洪喜.阿尔泰山蒙赫海尔汗冰川不同水体稳定同位素空间分布特征及水汽来源[J].冰川冻土,2014,36(5):1271-1279.
    12 JOUZEL J,MERLIVAT L,LORIUS C.Deuterium excess in an East Antarctic ice core suggests higher relative humidity at the oceanic surface during the last glacial maximum[J].Nature,1982,299(5885):688-691.
    13 VIMEUX F,MASSON V,JOUZEL J,et al.Holocene hydrological cycle changes in the Southern Hemisphere documented in East Antarctic deuterium excess records[J].Climate Dynamics,2001,17(7):503-513.
    14 VIMEUX F,MASSON V,JOUZEL J,et al.Glacial-interglacial changes in ocean surface conditions in the Southern Hemisphere[J].Nature,1999,398(6726):410-413.
    15 JOUZEL J,MERLIVAT L.Deuterium and oxygen 18 in precipitation:Modeling of the isotopic effects during snow formation[J].Journal of Geophysical Research:Atmospheres,1984,89(D7):11749-11757.
    16 CIAIS P,JOUZEL J.Deuterium and oxygen 18 in precipitation:Isotopic model,including mixed cloud processes[J].Journal of Geophysical Research:Atmospheres,1994,99(D8):16793-16803.
    17何静,庞洪喜,侯书贵.极地雪冰中过量17O研究进展[J].极地研究,2015,27(4):392-401.
    18 SAMUELS‐CROW K E,GALEWSKY J,SHARP Z D,et al.Deuterium excess in subtropical free troposphere water vapor:Continuous measurements from the Chajnantor Plateau,northern Chile[J].Geophysical Research Letters,2014,41(23):8652-8659.
    19 SODEMANN H,AEMISEGGER F,PFAHL S,et al.The stable isotopic composition of water vapour above Corsica during the HyMeXSOP1 campaign:insight into vertical mixing processes from lower-tropospheric survey flights[J].Atmospheric Chemistry and Physics,2017,17(9):6125-6151.
    20 PFAHL S,WERNLI H.Air parcel trajectory analysis of stable isotopes in water vapor in the eastern Mediterranean[J].Journal of Geophysical Research:Atmospheres,2008,113(D20),D20104.DOI:10.1029/2008jd009839.
    21 JOUZEL J,MERLIVAT L.Deuterium and oxygen 18 in precipitation:Modeling of the isotopic effects during snow formation[J].Journal of Geophysical Research:Atmospheres,1984,89(D7):11749-11757.
    22 PETIT J R,WHITE J W C,YOUNG N W,et al.Deuterium excess in recent Antarctic snow[J].Journal of Geophysical Research:Atmospheres,1991,96(D3):5113-5122.
    23 KAVANAUGH J L,CUFFEY K M.Space and time variation ofδ18O andδD in Antarctic precipitation revisited[J].Global Biogeochemical Cycles,2003,17(1).
    24 UEMURA R,MASSON-DELMOTTE V,JOUZEL J,et al.Ranges of moisture-source temperature estimated from Antarctic ice cores stable isotope records over glacial-interglacial cycles[J].Climate of the Past,2012,8(3):1109-1125.
    25 DüTSCH M,PFAHL S,SODEMANN H.The impact of nonequilibrium and equilibrium fractionation on two different deuterium excess definitions[J].Journal of Geophysical Research:Atmospheres,2017,122(23).
    26 MILLER M F.Isotopic fractionation and the quantification of 17O anomalies in the oxygen three-isotope system:an appraisal and geochemical significance[J].Geochimica et Cosmochimica Acta,2002,66(11):1881-1889.
    27 LUZ B,BARKAN E.Variations of 17O/16O and 18O/16O in meteoric waters[J].Geochimica et Cosmochimica Acta,2010,74(22):6276-6286.
    28 MAJOUBE M.Fractionnement en oxygene 18 et en deuterium entre l’eau et sa vapeur[J].Journal de Chimie Physique,1971a,68:1423-1436.
    29 GAT J R.Oxygen and hydrogen isotopes in the hydrologic cycle[J].Annual Review of Earth and Planetary Sciences,1996,24(1):225-262.
    30王永森,马振民,徐征和.基于瑞利分馏模式的水体蒸发线斜率模型[J].水科学进展,2011,22(6):795-800.
    31 LANDAIS A,CAPRON E,MASSON-DELMOTTE V,et al.Ice core evidence for decoupling between mid-latitude atmospheric water cycle and Greenland temperature during the last deglaciation[J].Climate of the Past Discussions,2018:1-24.
    32 CASADO M,LANDAIS A,MASSON-DELMOTTE V,et al.Continuous measurements of isotopic composition of water vapour on the East Antarctic Plateau[J].Atmospheric Chemistry and Physics,2016,16(13):8521-8538.
    33 TOUZEAU A,LANDAIS A,STENNI B,et al.Acquisition of isotopic composition for surface snow in East Antarctica and the links to climatic parameters[J].The Cryosphere,2016,10(2):837-852.
    34 HORITA J,WESOLOWSKI D J.Liquid-vapor fractionation of oxygen and hydrogen isotopes of water from the freezing to the critical temperature[J].Geochimica et Cosmochimica Acta,1994,58(16):3425-3437.
    35 ELLEH?J M D,STEEN-LARSEN H C,JOHNSEN S J,et al.Ice-vapor equilibrium fractionation factor of hydrogen and oxygen isotopes:Experimental investigations and implications for stable water isotope studies[J].Rapid Communications in Mass Spectrometry,2013,27(19):2149-2158.
    36 MARKLE B R,STEIG E J,BUIZERT C,et al.Global atmospheric teleconnections during Dansgaard-Oeschger events[J].Nature Geoscience,2017,10(1):36-40.
    37 JOUZEL J,STIEVENARD M,JOHNSEN S J,et al.The GRIP deuterium-excess record[J].Quaternary Science Reviews,2007,26(1):1-17.
    38 MASSON-DELMOTTE V,HOU S,EKAYKIN A,et al.A review of Antarctic surface snow isotopic composition:Observations,atmospheric circulation,and isotopic modeling[J].Journal of Climate,2008,21(13):3359-3387.
    39 UEMURA R,MOTOYAMA H,MASSON-DELMOTTE V,et al.Asynchrony between Antarctic temperature and CO2 associated with obliquity over the past 720,000 years[J].Nature communications,2018,9(1):961.
    40 MARKLE B R.Climate dynamics revealed in ice cores:advances in techniques,theory,and interpretation[D].Seattle:University of Washington,2017.
    41 STENNI B,MASSON-DELMOTTE V,SELMO E,et al.The deuterium excess records of EPICA Dome C and Dronning Maud Land ice cores(East Antarctica)[J].Quaternary Science Reviews,2010,29(1):146-159.
    42 SCHOENEMANN S W,STEIG E J,DING Q,et al.Triple water-isotopologue record from WAIS Divide,Antarctica:Controls on glacial-interglacial changes in 17Oexcess of precipitation[J].Journal of Geophysical Research:Atmospheres,2014,119(14):8741-8763.
    43 DüTSCH M L.Stable water isotope fractionation processes in weather systems and their influence on isotopic variability on different time scales[D].ETH Zurich,2016.
    44 KAWAMURA K,ABE-OUCHI A,MOTOYAMA H,et al.State dependence of climatic instability over the past 720,000 years from Antarctic ice cores and climate modeling[J].Science advances,2017,3(2):e1600446.
    45 AEMISEGGER F,STURM P,GRAF P,et al.Measuring variations ofδ18O andδ2H in atmospheric water vapour using two commercial laser-based spectrometers:an instrument characterisation study[J].Atmospheric Measurement Techniques,2012,5(7):1491·1511.
    46 STEEN-LARSEN H C,JOHNSEN S J,MASSON-DELMOTTE V,et al.Continuous monitoring of summer surface water vapor isotopic composition above the Greenland Ice Sheet[J].Atmospheric Chemistry and Physics,2013,13(9):4815-4828.
    47 WANG Y,HOU S,MASSON-DELMOTTE V,et al.A generalized additive model for the spatial distribution of stable isotopic composition in Antarctic surface snow[J].Chemical Geology,2010,271(3):133·141.
    48侯书贵,王叶堂,庞洪喜.南极冰盖雪冰氢、氧稳定同位素气候学:现状与展望[J].科学通报,2013,58(1):27·40.
    49 PANG H,HOU S,LANDAIS A,et al.Spatial distribution of 17O-excess in surface snow along a traverse from Zhongshan station to Dome A,East Antarctica[J].Earth and Planetary Science Letters,2015,414:126·133.
    50 WINKLER R,LANDAIS A,SODEMANN H,et al.Deglaciation records of 17O-excess in East Antarctica:reliable reconstruction of oceanic normalized relative humidity from coastal sites[J].Climate of the Past,2012,8(1):1-16.
    51 SCHOENEMANN S W,STEIG E J.Seasonal and spatial variations of 17Oexcess and dexcess in Antarctic precipitation:Insights from an intermediate complexity isotope model[J].Journal of Geophysical Research:Atmospheres,2016,121(19):11215-11247.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700