用户名: 密码: 验证码:
溶解性有机质对罗红霉素光降解的影响研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of dissolved organic matter on the photodegradation of roxithromycin
  • 作者:吕宝玲 ; 李威 ; 于筱莉 ; 张东 ; 张银龙
  • 英文作者:Lü Baoling;LI Wei;YU Xiaoli;ZHANG Dong;ZHANG Yinlong;Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment,Nanjing Forestry Unviersity;
  • 关键词:溶解性有机质 ; 罗红霉素 ; 光解动力学 ; 羟基自由基 ; 单态氧
  • 英文关键词:dissolved organic matter;;roxithromycin;;photodegradation kinetics;;hydroxyl radical;;singlet oxygen
  • 中文刊名:HJXX
  • 英文刊名:Acta Scientiae Circumstantiae
  • 机构:南京林业大学南方现代林业协同创新中心生物与环境学院;
  • 出版日期:2018-11-07 15:16
  • 出版单位:环境科学学报
  • 年:2019
  • 期:v.39
  • 基金:江苏省自然科学青年基金(No.BK20160930);; 江苏省高校自然科学基金面上项目(No.15KJB610006);; 中国博士后基金面上项目(No.2016M590461);; 江苏省博士后基金(No.1501008B);; 南京林业大学大学生创新训练计划项目(No.2016NFUSPITP211)
  • 语种:中文;
  • 页:HJXX201903013
  • 页数:8
  • CN:03
  • ISSN:11-1843/X
  • 分类号:101-108
摘要
近年来,罗红霉素(ROX)因其用量大、检出频率高和生态风险大引起了广泛关注.本文主要研究了环境pH条件下不同的溶解性有机质(DOM),包括富里酸(PLFA)、腐殖酸(SRHA)和天然有机质(SRNOM)对罗红霉素光降解的影响及主要活性物种对其光降解的贡献.结果表明:纯水中罗红霉素可发生自敏化光降解,在pH 6~8条件下,罗红霉素光降解的一级反应速率常数为0.0033~0.0049 h~(-1).DOM促进了罗红霉素光降解,其促进效果从大到小为PLFA>SRNOM>SRHA.DOM共存时罗红霉素光降解的反应速率常数随pH增加而增加,在pH 6时为0.0145~0.0266 h~(-1),在pH 8时为0.0273~0.0577 h~(-1).通过异丙醇淬灭实验发现,羟基自由基(·OH)对罗红霉素光降解起主要贡献,其贡献率在pH 6时为83.45%~98.70%,在pH 8时降低至76.76%~78.02%;3种DOM体系中产生的单态氧(~1O_2)的稳态浓度在(5.15~7.86)×10~(-14) mol·L~(-1)范围内;在pH 6、7和8的条件下,~1O_2与罗红霉素的二级反应速率常数分别为2.27×10~5、1.96×10~6和1.51×10~7 L·mol~(-1)·s~(-1).~1O_2对罗红霉素的光降解的贡献随pH升高而升高,在pH 6时为0.21%~0.43%,在pH 8时为4.85%~11.33%.
        In recent years, roxithromycin(ROX) has attracted wide attention mainly due to its large usage, high detection rate in aquatic environment and the potential ecological risk. This study investigated the effects of different dissolved organic matter(DOM), including Pony Lake fulvic acid(PLFA), Suwannee River humic acid(SRHA) and natural organic matter(SRNOM), on the degradation of ROX under ambient pH conditions, and corresponding contribution of primary reactive species. The results showed that ROX degraded by self-sensitization in pure water, and the apparent reaction rate constant was determined as 0.0033~ 0.0049 h~(-1) under pH 6~8. DOM was found to promote the degradation of ROX with the promoting rate in the order of PLFA>SRNOM>SRHA. The ROX degradation rate constants in the presence of DOM increased with solution pH, with the values of 0.0145~0.0266 h~(-1) at pH 6 and 0.0273~0.0577 h~(-1) at pH 8. Based on the isopropanol quenching experiment, ·OH was found to play the most important role in the degradation of ROX, with the contribution of 83.45%~98.70% at pH 6 and 76.76%~78.02% at pH 8. In addition, the singlet oxygen(~1O_2) also formed in DOM system with the steady state concentration of(5.15~7.86) × 10~(-14) mol·L~(-1). The second order rate constants between ~1O_2 and ROX were determined to be 2.27 × 10~5, 1.96 × 10~6 and 1.51 × 10~7 L·mol~(-1)·s~(-1) at pH 6, 7 and 8, respectively. The contribution of ~1O_2 on the degradation of ROX increased with solution pH, which accounted for 0.21% ~0.43% at pH 6 and 4.85%~11.33% at pH 8.
引文
Alexy R, Kumpel T, Kummerer K. 2004. Assessment of degradation of 18 antibiotics in the Closed Bottle Test [J]. Chemosphere, 57(6): 505-512
    Babic S, Perisa M, Skoric I. 2013. Photolytic degradation of norfloxacin, enrofloxacin and ciprofloxacin in various aqueous media [J]. Chemosphere, 91(11): 1635-1642
    Batchu S R, Panditi V R, O′Shea K E, et al. 2014a. Photodegradation of antibiotics under simulated solar radiation: Implications for their environmental fate [J]. Science of the Total Environment, 470-471(2): 299-310
    Batchu S R, Panditi V R, Gardinali P R. 2014b. Photodegradation of sulfonamide antibiotics in simulated and natural sunlight: implications for their environmental fate [J]. Journal of Environmental Science and Health, Part B, 49(3): 200-211
    Bu Q, Wang B, Huang J, et al. 2013. Pharmaceuticals and personal care products in the aquatic environment in China: A review [J]. Journal of Hazardous Materials, 262(22): 189-211
    Cawley K M, Korak J A, Rosario-Ortiz F L. 2015. Quantum yields for the formation of reactive intermediates from dissolved organic matter samples from the Suwannee River [J]. Environmental Engineering Science, 32(1): 31-37
    陈蕾, 沈超峰, 王郑, 等. 2013. 天然有机质对环境污染物的转化过程的介导作用[J]. 生态环境学报, 22(7): 1244-1249
    Dong M M, Rosario-Ortiz F L. 2012. Photochemical formation of hydroxyl radical from effluent organic matter [J]. Environmental Science and Technology, 46(7): 3788-3794
    Gobel A, Thomsen A, Mcardell C S, et al. 2005. Occurrence and sorption behavior of sulfonamides, macrolides, and trimethoprim in activated sludge treatment [J]. Environmental Science and Technology, 39(11): 3981-3989
    胡学香, 陈勇, 聂玉伦, 等. 2012. 水中四环素类化合物在不同光源下的光降解[J]. 环境工程学报, 6(8): 2465-2469
    Hyber M M, Canonica S, Park G Y, et al. 2003. Oxidation of pharmaceuticals during ozonation and advanced oxidation processes[J]. Environmental Science and Technology, 37(5): 1016-1024
    Jin X, Xu H, Qiu S, et al. 2017. Direct photolysis of oxytetracycline: Influence of initial concentration, pH and temperature [J]. Journal of Photochemistry and Photobiology A: Chemistry, 332: 224-231
    Kummerer K. 2009. Antibiotics in the aquatic environment-A review, part I [J]. Chemosphere,75(4):417-434
    Li Y, Chen J, Qiao X, et al. 2016. Insights into photolytic mechanism of sulfapyridine induced by triplet- excited dissolved organic matter [J]. Chemosphere, 147: 305-310
    Liang C,Zhao H,Deng M,et al. 2015. Impact of dissolved organic matter on the photolysis of the ionizable antibiotic norfloxacin [J]. Journal of Environmental Sciences, 27(1): 115-123
    刘雪石, 乔显亮, 刘远. 2017. DOM的光化学活性及其对污染物光解的影响[J]. 环境科学与技术, 40(1): 85-94
    McArdell C S, Molnar E, Suter M J F S, et al. 2003. Occurrence and fate of macrolide antibiotics in wastewater treatment plants and in the glatt valley watershed, switzerland [J]. Environmental Science and Technology, 37(24): 5479-5486
    Mostafa S, Rosario-Ortiz F L. 2013. Singlet oxygen formation from wastewater organic matter [J]. Environmental Science and Technology, 47(15): 8179-8186
    Rizzo L, Manaia C, Merlin C, et al. 2013. Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: A review [J]. Science of the Total Environment, 447(9): 345-360
    Sturini M, Speltini A, Maraschi F, et al. 2015. Sunlight-induced degradation of fluoroquinolones in wastewater effluent: Photoproducts identification and toxicity [J]. Chemosphere, 134: 313- 318
    Tong L, Eichhorn P, Perez S, et al. 2011. Photodegradation of azithromycin in various aqueous systems under simulated and natural solar radiation: kinetics and identification of photoproducts [J]. Chemosphere, 83(3): 340-348
    Vione D, Feitosa-Felizzola J, Minero C, et al. 2009. Phototransformation of selected human-used macrolides in surface water: kinetics, model predictions and degradation pathways [J]. Water Research, 43(7): 1959-1967
    Wang H, Wang M, Wang H, et al. 2016. Aqueous photochemical degradation of BDE-153 in solutions with natural dissolved organic matter [J]. Chemosphere, 155: 367-374
    吴丰昌, 王立英, 黎文, 等. 2008. 天然有机质及其在地表环境中的重要性[J]. 湖泊科学, 20(1): 1-12
    尉小旋, 陈景文, 王如冰, 等. 2015. 氧氟沙星和诺氟沙星的水环境光化学转化:pH值及溶解性物质的影响[J]. 环境化学, 34(3): 448-454
    Xu H, Cooper W J, Jung J, et al. 2011. Photosensitized degradation of amoxicillin in natural organic matter isolate solutions [J]. Water Research, 45(2):632-638
    严清,訾成方,张怡昕,等. 2013. 重庆主城区水域典型 PhACs污染水平及生态风险评估[J].环境科学研究, 26(11): 1178-1185
    Yan S, Song W. 2014. Photo-transformation of pharmaceutically active compounds in the aqueous environment: a review [J]. Environmental Science: Processes and Impacts, 16: 697-720
    Young R B, Latch D E, Mawhinney D B, et al. 2013. Direct photodegradation of androstenedione and testosterone in natural sunlight: inhibition by dissolved organic matter and reduction of endocrine disrupting potential [J]. Environmental Science and Technology, 47(15): 8416-8424
    Zhang Q Q, Ying G G, Pan C G, et al. 2015. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: Source Analysis, multimedia modeling, and linkage to bacterial resistance [J]. Environmental Science and Technology, 49(11): 6772-6782
    Zhang D, Yan S, Song W. 2014. Photochemically induced formation of Reactive Oxygen Species (ROS) from effluent organic matter [J]. Environmental Science and Technology, 48(21): 12645-12653
    Zhou H, Lian L, Yan S, et al. 2017. Insights into the photo-induced formation of reactive intermediates from effluent organic matter: The role of chemical constituents [J]. Water Research, 112:120-128
    周启星, 罗义, 王美娥. 2007. 抗生素的环境残留、态毒性及基因污染[J]. 生态毒理学报, 2(3):243-251
    朱婷婷, 段标, 宋战锋, 等. 2014. 深圳铁岗水库体中抗生素污染特征分析及生态风险评价[J]. 生态环境学报, 23(7): 1175-1180

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700