用户名: 密码: 验证码:
热电材料高通量实验制备与表征方法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Progress on High-throughput Synthesis and Characterization Methods for Thermoelectric Materials
  • 作者:骆军 ; 何世洋 ; 李志立 ; 李永博 ; 王风 ; 张继业
  • 英文作者:LUO Jun;HE Shi-Yang;LI Zhi-Li;LI Yong-Bo;WANG Feng;ZHANG Ji-Ye;School of Materials Science and Engineering, Shanghai University;Materials Genome Institute,Shanghai University;
  • 关键词:高通量实验 ; 热电材料 ; 电输运性能 ; 热导率 ; 综述
  • 英文关键词:high-throughput experiement;;thermoelectric materials;;electrical transport properties;;thermal conductivity;;review
  • 中文刊名:WGCL
  • 英文刊名:Journal of Inorganic Materials
  • 机构:上海大学材料科学与工程学院;上海大学材料基因组工程研究院;
  • 出版日期:2019-03-18 11:00
  • 出版单位:无机材料学报
  • 年:2019
  • 期:v.34;No.233
  • 基金:国家重点研发计划(2018YFB0703600);; 国家自然科学基金(51772186,51632005);; 上海市科委项目(上海材料基因组工程研究院,16DZ2260601)~~
  • 语种:中文;
  • 页:WGCL201903003
  • 页数:13
  • CN:03
  • ISSN:31-1363/TQ
  • 分类号:17-29
摘要
高通量材料实验旨在利用较少的实验次数快速获得成分?物相?结构?性能之间关系,筛选出组分最优的材料体系,目前已在超导材料、荧光材料以及巨磁阻材料等方面有较多应用。热电材料是可以实现热能和电能直接相互转换的功能材料,在温差发电和废热利用等领域有着重要的应用价值,但热电材料的传统实验制备与表征方法存在着实验周期长和效率低等问题。因此,将高通量实验的方法和理念引入新型热电材料的研发和优化具有重要的理论和实际意义。本文主要总结和梳理了现有在热电材料实验研究中具有较好应用前景的高通量实验制备与表征技术,包括高通量样品制备、成分?结构高通量表征、电?热输运性能高通量表征等,并分析了各高通量实验技术在实验热电材料研究中的优势和局限性,希望为今后热电材料高通量实验优化和筛选提供一定的参考。
        High-throughput experiments aimed to promptly obtain the relationship among composition-phase-structureperformance with fewer experiments and screen out optimal material systems with optimized compositions. Up to now,high-throughput experiments are successfully applied in superconducting materials, fluorescent materials and giant magnetoresistance materials. Thermoelectric materials are functional materials that can realize the direct conversion between thermal energy and electrical energy and can be potentially applied in the fields of thermoelectric power generation and waste heat utilization. However, traditional preparation and characterization methods for thermoelectric materials have disadvantages of time consuming and low efficiency. Therefore, it is of great theoretical and practical significance to introduce methods and concepts of high-throughput experiments into development and optimization of new thermoelectric materials. In this paper, we summarize and discuss the existing high-throughput experimental preparation and characterization techniques with great application prospects in thermoelectric materials, including high-throughput sample preparation, composition-structure, and electro-thermal transport properties characterization,and then analyze the advantages and limitations of these high-throughput techniques. We hope to provide a reference for future high-throughput optimization and screening of thermoelectric materials.
引文
[1]WIDENERANDREA.Materialsgenomeinitiative.Chem.Eng.News, 2013, 91(31):25–27.
    [2]RACCUGLIA PAUL, ELBERT KATHERINE C, ADLER PHILIP DF,etal.Machine-learning-assistedmaterialsdiscoveryusing failed experiments. Nature, 2016, 533(7601):73–75.
    [3]HOCHBAUMALLONI,CHENRENKUN,DELGADORAUL DIAZ, et al. Enhanced thermoelectric performance of rough silicon nanowires. Nature, 2008, 451(7175):163–165.
    [4]YOU LI, LIU YE-FENG, LI XIN, et al. Boosting the thermoelectric performance of PbSe through dynamic doping and hierarchical phonon scattering. Energy Environ. Sci., 2018, 11(7):1848–1858.
    [5]ZHUTIE-JUN,LIUYIN-TU,FUCHEN-GUANG,etal.Compromiseandsynergyinhigh-efficiencythermoelectricmaterials.Adv. Mater., 2017, 29(14):1605884–1–26.
    [6]PANYU,AYDEMIRUMUT,GROVOGUIJANNA,etal.Melt-centrifuged(Bi,Sb)2Te3:engineeringmicrostructuretoward high thermoelectric efficiency. Adv. Mater., 2018, 30(34):1802016–1–7.
    [7]YUCUI,ZHUTIE-JUN,XIAOKAI,etal.Microstructureof ZrNiSn-basehalf-Heuslerthermoelectricmaterialspreparedby melt-spinning. J. Inorg. Mater., 2010, 25(6):569–572.
    [8]LIU YIN-TU,FU CHEN-GUANG,XIA KAI-YANG,et al.Lanthanidecontractionasadesignfactorforhigh-performance half-Heuslerthermoelectricmaterials.Adv.Mater.,2018,30(32):1800881–1–7.
    [9]YAO ZHENG, QIU PENG-FEI, LI XIAO-YA, et al. Investigation on quick fabrication of n-type filled Skutterudites. J. Inorg. Mater.,2016, 31(12):1375–1382.
    [10]ZHANG JIA-WEI, LIU RUI-HENG, CHENG NIAN, et al. Highperformance pseudocubic thermoelectric materials from non-cubic chalcopyrite compounds. Adv. Mater., 2014, 26(23):3848–3853
    [11]BHATT RANU, BHATTACHARYA SHOVIT, BASU RANITA, et al.Enhancedthermoelectricpropertiesofselenium-deficientlayered TiSe2–x:a charge-density-wave material. ACS Appl. Mater. Interfaces, 2014, 6(21):18619–18625.
    [12]ZHAOLI-DONG,DRAVIDVINAYAKP,KANATZIDIS MERCOURIG.Thepanoscopicapproachtohighperformance thermoelectrics. Energy Environ. Sci., 2014, 7(1):251–268.
    [13]PEI YAN-ZHONG, HEINZ NICHOLAS A, AARON LALONDE,etal.Combinationoflargenanostructuresandcomplexband structureforhighperformancethermoelectricleadtelluride.Energy Environ. Sci., 2011, 4(9):3640–3645.
    [14]YAN YG,MARTINJ,WONG-NGW,etal.Atemperaturedependent screening tool for high throughput thermoelectric characterization of combinatorial films. Rev. Sci. Instrum., 2013, 84(11):115110–1–7.
    [15]XIANG XIAO-DONG, SUN XIAO-DONG, BRICE?O GABRIEL,etal.Acombinatorialapproachtomaterialsdiscovery.Science,1995, 268(5218):1738–1740.
    [16]FUJIMOTO K, KATO T, ITO S, et al. Development and applicationofcombinatorialelectrostaticatomizationsystem“M-ist Combi”:high-throughput preparation of electrode materials. Solid State Ionics, 2006, 177(26-32):2639–2642.
    [17]FUJIMOTOKENJIRO,TAGUCHITORU,SHOGOYOSHIDA,etal. Design of Seebeck coefficient measurement probe for powder library. ACS Comb. Sci., 2014, 16(2):66–70
    [18]HEDEGAARD ELLEN M J, JOHNSEN SIMON, BJERG LASSE,et al. Functionally graded Ge1–xSix thermoelectrics by simultaneous bandgapandcarrierdensityengineering.Chem.Mater.,2014,26(17):4992–4997.
    [19]KASAPSAFA,CAPPERPETER.SpringerHandbookofElectronic and Photonic Materials. New York:Springer Science Business Media, Inc., 2006:236.
    [20]HEDEGAARDELLENMJ,MAMAKHELAREFAH,REARDONHAZEL,etal.Functionallygraded(PbTe)1–x(SnTe)x thermoelectrics. Chem. Mater., 2018, 30(1):280–287.
    [21]KOHRI H, NISHIDA I A, SHIOTA I. Improvement of thermoelectric properties for n-type PbTe by adding Ge. Mater. Sci. Forum,2003, 423-425:381–384.
    [22]ZHAO JI CHENG, JACKSON MELVIN R, PELUSO LOUIS A, et al.Adiffusionmultipleapproachfortheaccelerateddesignof structural materials. MRS Bull., 2002, 27(4):324–329.
    [23]GELBSTEIN Y, DASHEVSKY Z, DARIEL M P. Powder metallurgicalprocessingoffunctionallygradedp-Pb1–xSnxTematerials for thermoelectric applications. Phys. B, 2007, 391(2):256–265.
    [24]HAZAN EDEN, OHAD BEN-YEHUDA, MADAR NAOR, et al.Functionalgradedgermanium-leadchalcogenide-basedthermoelectricmoduleforrenewableenergyapplications.Adv.Energy Mater., 2015, 5(11):1500272–1–8.
    [25]JANUSZKO KAMILA, STABRAWAARTUR, OGATA YUDAI,etal. Influence of sedimentation of atoms on structural and thermoelectricpropertiesofBi-Sballoys.J.Electron.Mater.,2016,45(3):1947–1955.
    [26]ZIOLKOWSKIPAWEL,WAMBACHMATTHIAS,LUDWIG ALFRED,etal.Applicationofhigh-throughputSeebeckmicroprobe measurements on thermoelectric half-Heusler thin film combinatorial material libraries. ACS Comb. Sci., 2018, 20(1):1–18.
    [27]WAMBACHMATTHIAS,STERNROBIN,BHATTACHARYA SANDIP,etal.Unravelingself-dopingeffectsinthermoelectric TiNiSnhalf-Heuslercompoundsbycombinedtheoryandhighthroughput experiments. Adv. Electron. Mater., 2016, 2(3):1500208–1–9.
    [28]XIANGXIAO-DONG.Highthroughputsynthesisandscreening for functional materials. Appl. Surf. Sci., 2004, 223(1/3):54–61.
    [29]ZHAO JI-CHENG, ZHENG XUAN, CAHILLB DAVID G. Thermal conductivity mapping of the Ni-Al system and the beta-NiAl phase in the Ni-Al-Cr system. Scripta Mater., 2012, 66(11):935–938.
    [30]MAO SAMUELS. High throughput growth and characterization of thin film materials. J. Cryst. Growth, 2013, 379:123–130.
    [31]PERNOT GILLES, MICHEL HéLèNE, VERMEERSCH BJORN,etal.Frequency-dependentthermalconductivityintimedomain thermoreflectanceanalysisofthinfilms.Mater.Res.Soc.Symp.Proc., 2011, 1347:DOI:10.1557/opl.2011.1277.
    [32]PADDOCKCAROLYNA,EESLEYGARYL.Transientthermoreflectance from thin metal films. J. Appl. Phys., 1986, 60(1):285–290.
    [33]ABADA B, BORCA-TASCIUC D A, MARTIN-GONZALEZA M S. Non-contact methods for thermal properties measurement. Renew. Sust. Energ. Rev., 2017, 76:1348–1370.
    [34]MCCLUSKEY PATRICK J, VLASSAK JOOST J. Combinatorial nanocalorimetry. J. Mater. Res., 2010, 25(11):2086–2100.
    [35]GREGOIRE JOHN M, MCCLUSKEY PATRICK J, DALE DARREN,et al. Combining combinatorial nanocalorimetry and X-ray diffraction techniques to study the effects of composition and quench rate on Au-Cu-Si metallic glasses. Scripta Mater., 2012, 66(3/4):178–181.
    [36]TRITT TERRY M. Thermal Conductivity:Theory, Properties, and Applications.NewYork:KluwerAcademic/PlenumPublishers,2004:225–231.
    [37]EESLEY G L. Observation of nonequilibrium electron heating in copper. Phys. Rev. Lett., 1983, 51(23):2140–2143.
    [38]FAVALOROT,BAHKJH,SHAKOURIA.Characterizationof thetemperaturedependenceofthethermoreflectancecoefficient for conductive thin films. Rev. Sci. Instrum., 2015, 86(2):024903–1–9.
    [39]MANZANO CRISTINA V, ABAD BEGO?A, MU?OZ MIGUEL ROJO, et al. Anisotropic effects on the thermoelectric properties of highly oriented electrodeposited Bi2Te3 films. Sci. Rep., 2016, 6:19129–1–8.
    [40]HUXTABLESCOTT,CAHILLDAVIDG,FAUCONNIER VINCENT,etal.Thermalconductivityimagingatmicrometre-scaleresolutionforcombinatorialstudiesofmaterials.Nat.Mater., 2004, 3(5):298–301.
    [41]NISHI TSUYOSHI, YAMAMOTO SUGURU, MORI OKAWA, et al. Thermal microscope measurement of thermal effusivity distribution in compositionally graded PbTe-Sb2Te3-Ag2Te alloy system.Thermochim. Acta, 2018, 659:39–43.
    [42]WIELGOSZEWSKIGRZEGORZ,GOTSZALKATEODOR.Scanningthermalmicroscopy(SThM):howtomaptemperature and thermal properties at the nanoscale. Adv. Imag. Electron Phys.,2015, 190:177–221
    [43]GRAUBYSTéPHANE,PUYOOETIENNE,RAMPNOUX JEAN-MICHEL, et al. Si and SiGe nanowires:fabrication process andthermalconductivitymeasurementby3ω-scanningthermal microscopy. J. Phys. Chem. C, 2013, 117(17):9025–9034.
    [44]KINGWILLIAMP,KENNYTHOMASW.Designofatomic forcemicroscopecantileversforcombinedthermomechanical writingandthermalreadinginarrayoperation.J.Microelectromech. S., 2002, 11(6):765–774.
    [45]ESFAHANIEHSANNASR,MAFEI-YUE,WANGSHAN-YU,et al. Quantitative nanoscale mapping of three-phase thermal conductivities in filled skutterudites via scanning thermal microscopy.Natl. Sci. Rev., 2018, 5(1):59–69.
    [46]ANDRESPEREZ-TABORDAJ,CABALLERO-CALEROO,VERA-LONDONO L, et al. High thermoelectric zT in n-type silver selenide films at room temperature. Adv. Energy Mater., 2018,8(8):1870033–1–8.
    [47]MARHOUN FERHAT, JIRO NAGAO. Thermoelectric and transport properties ofβ-Ag2Se compounds. J. Appl. Phys., 2000, 88(2):813–816.
    [48]WUKH,HUNGCI,ZIOLKOWSKIP,etal.Improvementof spatialresolutionforlocalSeebeckcoefficientmeasurementsby deconvolutionalgorithm.Rev.Sci.Instrum.,2009,80(10):105104–1–8.
    [49]ZHOU AI-JUN, WANG WEI-HANG, YAO XU, et al. Impact of the film thickness and substrate on the thermopower measurement ofthermoelectricfilmsbythepotential-Seebeckmicroprobe(PSM). Appl. Therm. Eng., 2016, 107:552–559.
    [50]MI JIAN-LI, BREMHOLM MARTIN, BIANCHI MARCO, et al.Phaseseparationandbulkp-ntransitioninsinglecrystalsof Bi2Te2Se topological insulator. Adv. Mater., 2013, 25(6):889–893.
    [51]DEBOORJ,STIEWEPC,ZIOLKOWSKIP,etal.HightemperaturemeasurementofSeebeckcoefficientandelectrical conductivity. J. Electron. Mater., 2013, 42(7):1711–1718.
    [52]XU K Q, ZENG H R, YU H Z, et al. Ultrahigh resolution characterizing nanoscale Seebeck coefficient via the heated, conductive AFM probe. Appl. Phys. A, 2015, 118(1):57–61.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700