用户名: 密码: 验证码:
华北地区中东部岩石圈挠曲与均衡特性以及地震活动性分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Flexure of the lithosphere, isostatic characteristic and seismicity in middle east area of North China
  • 作者:佘雅文 ; 付广裕 ; 高原 ; 张国庆 ; 刘泰 ; 王振宇
  • 英文作者:SHE YaWen;FU GuangYu;GAO Yuan;ZHANG GuoQing;LIU Tai;WANG ZhenYu;Institute of Geophysics;Hebei Earthquake Agency;Institute of Earthquake Forecasting;Second Crust Monitoring and Application Center;
  • 关键词:雄安新区 ; 岩石圈有效弹性厚度 ; 布格重力异常 ; 重力均衡 ; 垂向构造应力 ; 地震活动性
  • 英文关键词:Xiong′an new district;;Effective elastic thickness of the lithosphere;;Bouguer gravity anomaly;;Gravitational isostasy;;Vertical tectonic stress;;Seismicity
  • 中文刊名:DQWX
  • 英文刊名:Chinese Journal of Geophysics
  • 机构:中国地震局地球物理研究所;河北省地震局;中国地震局地震预测研究所;中国地震局第二监测中心;
  • 出版日期:2018-11-15
  • 出版单位:地球物理学报
  • 年:2018
  • 期:v.61
  • 基金:国家自然科学基金(41574071);; 地震预测研究所基本科研业务费专项(2016IES010204);; 河北省地震局地震科技星火计划项目(DZ20170510054)联合资助
  • 语种:中文;
  • 页:DQWX201811011
  • 页数:11
  • CN:11
  • ISSN:11-2074/P
  • 分类号:132-142
摘要
华北地区中东部涵盖北京、天津以及即将建设的雄安新区等大型城市,区内发育了张渤地震带等多条大型活动断裂,地震活动性较强,历史上发生过多次6级以上地震.本文利用Fan小波的布格重力异常一致性方法研究该区的岩石圈有效弹性厚度和均衡调整初始加载比分布,同时基于均衡调整方法计算该区垂向构造应力分布,并将以上结果与历史地震活动进行统计分析.岩石圈挠曲分析表明,华北地区中东部的岩石圈有效弹性厚度为10~65 km,分布特征为自东南向西北逐渐减小.均衡调整初始加载比为0.5~0.8,表明现今的岩石圈挠曲状态主要由莫霍面加载形成.该区地壳承载的垂向构造应力约为-20~20 MPa,中西部地区垂向构造应力向上,东北和西南地区向下.统计分析结果显示,华北地区中东部的地震活动性随着岩石圈有效弹性厚度和均衡调整初始加载比的增加而减弱,垂向构造应力零值区域地震活动性较弱.雄安新区的岩石圈有效弹性厚度大约为15 km,均衡调整初始加载比为0.5~0.6,垂向构造应力为15~20 MPa,岩石圈参数对应的地震活动性较强,相关结果对于新区建设具有一定参考价值.
        Middle east area of North China covers many mega-metropolis, such as Beijing and Tianjin, as well as the soon-to-be-built Xiong′an New District. Several large-scale active fault zones such as the Zhangjiakou-Bohai seismic belt have been developed in this area. With a strong seismicity, there have been many earthquakes of magnitude 6 or above in history. The distributions of effective elastic thickness and the isostatic initial loading ratio in this area are studied by the bouguer gravity anomalies coherence method which bases on the Fan wavelet. Simultaneously, the distribution of the vertical tectonic stresses is calculated by the isostatic adjustment method. Furthermore, the results above and the historical seismicity are analyzed statistically. The analysis of lithosphere flexure shows that the effective elastic thickness in the middle east area of North China is about 10~65 km, and its distribution features decrease gradually from southeast to northwest. The isostatic initial loading ratio is about 0.5~0.8, which indicates that the present flexure state of lithosphere is mainly caused by the loading of Moho interface. The vertical tectonic stress of the crust bearing in this area is about-20~20 MPa, the stresses are upward in the central and western areas, and downward in the northeastern and southwestern areas. The statistical results show that the seismicity decreases with the increases of the magnitude of effective elastic thickness and the isostatic initial loading ratio in middle east area of North China. The seismicity is weak in the zero value area of the vertical tectonic stress. The effective elastic thickness of the lithosphere in the Xiong′an new district is about 15 km. The isostatic initial load ratio is 0.5~0.6, and the vertical tectonic stress is 15~20 MPa. The lithosphere parameters correspond to strong seismicity, and the relevant results have certain reference value for the construction of the new district.
引文
Amante C, Eakins B W. 2009. ETOPO1 1 arc-minute global relief model: procedures, data sources and analysis. NOAA Technical Memorandum NESDIS NGDC-24. National Geophysical Data Center, NOAA, doi: 10.7289/V5C8276M.
    Becker J J, Sandwell D T, Smith W H F, et al. 2009. Global bathymetry and elevation data at 30 arc seconds resolution: SRTM30_PLUS. Marine Geodesy, 32(4): 355-371.
    Chen B, Chen C, Kaban M K, et al. 2013. Variations of the effective elastic thickness over China and surroundings and their relation to the lithosphere dynamics. Earth and Planetary Science Letters, 363: 61-72.
    Chen B, Liu J X, Kaban M K, et al. 2014. Elastic thickness, mechanical anisotropy and deformation of the southeastern Tibetan Plateau. Tectonophysics, 637: 45-56.
    Chen L, Cheng C, Wei Z G. 2009. Seismic evidence for significant lateral variations in lithospheric thickness beneath the central and western North China Craton. Earth and Planetary Science Letters, 286(1-2): 171-183.
    F?rste C, Bruinsma S L, Abrikosov O, et al. 2014. The latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse. GFZ Data Services.
    Forsyth D W. 1985. Subsurface loading and estimates of the flexural rigidity of continental lithosphere. Journal of Geophysical Research: Solid Earth, 90(B14): 12623-12632.
    Fu G Y, She Y W. 2017. Gravity anomalies and isostasy deduced from new dense gravimetry around the Tsangpo Gorge, Tibet. Geophysical Research Letters, 44(20): 10233-10239, doi: 10.1002/2017GL075290.
    Gao S, Zhang J F, Xu W L, et al. 2009. Delamination and destruction of the North China Craton. Chinese Science Bulletin, 54(19): 3367-3378, doi: 10.1007/s11434-009-0395-9.
    Gao S H, She Y W, Fu G Y. 2016. A new method for computing the vertical tectonic stress of the crust by use of hybrid gravity and GPS data. Chinese Journal of Geophysics (in Chinese), 59(6): 2006-2013, doi: 10.6038/cjg20160607.
    He L J, Qiu N S. 2014. Heating and craton destruction. Chinese Journal of Geology (in Chinese), 49(3): 728-738.
    Hu G, Teng J W, He Z Q, et al. 2017. A traveltime tomography study by teleseismic S wave data in the northeastern part of North China Craton. Chinese Journal of Geophysics (in Chinese), 60(5): 1703-1712, doi: 10.6038/cjg20170508.
    Hu S B, He L J, Wang J Y. 2001. Compilation of heat flow data in the China continental area (3rd edition). Chinese Journal of Geophysics (in Chinese), 44(5): 611-626.
    Jiang G Z, Gao P, Rao S, et al. 2016. Compilation of heat flow data in the continental area of China (4th edition). Chinese Journal of Geophysics (in Chinese), 59(8): 2892-2910, doi: 10.6038/ cjg20160815.
    Kirby J F, Featherstone W, 2002. High-resolution grids of gravimetric terrain correction and complete Bouguer corrections over Australia. Exploration Geophysics, 33(4): 161-165.
    Kirby J F. 2005. Which wavelet best reproduces the Fourier power spectrum?. Computers & Geosciences, 31(7): 846-864.
    Kirby J F, Swain C J. 2008. An accuracy assessment of the fan wavelet coherence method for elastic thickness estimation. Geochemistry, Geophysics, Geosystems, 9(3): Q03022, doi: 10.1029/2007GC001773.
    Kirby J F, Swain C J. 2009. A reassessment of spectral Te estimation in continental interiors: the case of North America. Journal of Geophysical Research: Solid Earth, 114(B8): B08401, doi: 10.1029/2009JB006356.
    Kirby J F, Swain C J. 2011. Improving the spatial resolution of effective elastic thickness estimation with the fan wavelet transform. Computers & Geosciences, 37(9): 1345-1354.
    Kirby J F, Swain C J. 2013. Power spectral estimates using two-dimensional Morlet-fan wavelets with emphasis on the long wavelengths: jackknife errors, bandwidth resolution and orthogonality properties. Geophysical Journal International, 194(1): 78-99.
    Laske G, Masters G, Ma Z T, et al. 2013. Update on CRUST1.0—A 1-degree global model of Earth′s crust. Geophys. Res. Abstracts, 15: EGU2013-2658.
    Li Y C, Sideris M G. 1994. Improved gravimetric terrain corrections. Geophysical Journal International, 119(3): 740-752.
    Luo Y, Chong J J, Ni S D, et al. 2008. Moho depth and sedimentary thickness in Capital region. Chinese Journal of Geophysics (in Chinese), 51(4): 1135-1145.
    McKenzie D. 2003. Estimating Te in the presence of internal loads. Journal of Geophysical Research: Solid Earth, 108(B9): 2438, doi: 10.1029/2002JB001766.
    Pérez-Gussinyé M, Swain C J, Kirby J F, et al. 2009b. Spatial variations of the effective elastic thickness, Te, using multitaper spectral estimation and wavelet methods: examples from synthetic data and application to South America. Geochemistry, Geophysics, Geosystems, 10(4): Q04005, doi: 10.1029/2008GC002229.
    Pérez-Gussinyé M, Metois M, Fernández M, et al. 2009a. Effective elastic thickness of Africa and its relationship to other proxies for lithospheric structure and surface tectonics. Earth and Planetary Science Letters, 287(1-2): 152-167.
    Parker R L. 1973. The rapid calculation of potential anomalies. Geophysical Journal International, 31(4): 447-455.
    Peitgen H O, Saupe D. 1988. The Science of Fractal Images. New York: Springer.
    She Y W, Fu G Y, Wang Z H, et al. 2016. Gravity anomalies and lithospheric flexure around the Longmen Shan deduced from combinations of in situ observations and EGM2008 data. Earth, Planets and Space, 68(1): 163, doi: 10.1186/s40623-016-0537-7.
    She Y W, Fu G Y, Wang Z H, et al. 2017. Vertical tectonic stress in eastern margin of Bayan Har block revealed by gravity and terrain data. Chinese Journal of Geophysics (in Chinese), 60(6): 2480-2492, doi: 10.6038/cjg20170635.
    Simons F J, Van Der Hilst R D, Zuber M T. 2003. Spatiospectral localization of isostatic coherence anisotropy in Australia and its relation to seismic anisotropy: Implications for lithospheric deformation. Journal of Geophysical Research: Solid Earth, 108(B5): 2250, doi: 10.1029/2001JB000704.
    Smith W H F, Sandwell D T. 1997. Global sea floor topography from satellite altimetry and ship depth soundings. Science, 277(5334): 1957-1962, doi: 10.1126/science.277.5334.1956.
    Snyder J P. 1987. Map projections—A working manual. U.S. Geological Survey Professional Paper 1395. Washington, DC: US Government Printing Office.
    Wang J Y, Huang S P. 1990. Compilation of heat flow data in the continental area of China (2th edition). Seismology and Geology (in Chinese), 12(4): 351-366.
    Wang W X, Shi Y L, Zhang J, et al. 2009. Dynamic gravity changes before and after the 2006 Wenan M5.1 earthquake, Hebei Province. Earthquake (in Chinese), 29(2): 40-47.
    Watts A B. 2001. Isostasy and Flexure of the Lithosphere. London: Cambridge University Press.
    Yang B C, Qin S Q, Xue L, et al. 2017. Seismic hazard assessment in the Xiongan New Area. Chinese Journal of Geophysics (in Chinese), 60(12): 4644-4654, doi: 10.6038/cjg20171209.
    Yang J H, Wu F Y, Wilde S A. 2003. A review of the geodynamic setting of large-scale Late Mesozoic gold mineralization in the North China Craton: an association with lithospheric thinning. Ore Geology Reviews, 23(3-4): 125-152.
    Yang T, Fu R S, Huang J S. 2013. Effective elastic thickness of continental lithosphere in China with Moho topography admittance method. Chinese Journal of Geophysics (in Chinese), 56(6): 1877-1886, doi: 10.6038/cjg20130610.
    Zhang L Y, Liu Q Y, He L J. 2016. The different lithospheric thermal structure of North China Craton and its implications. Chinese Journal of Geophysics (in Chinese), 59(10): 3618-3626, doi: 10.6038/cjg20161009.
    Zhao B, Gao Y, Shi Y T. 2013. Relocation of small earthquakes in North China using double difference algorithm. Earthquake (in Chinese), 33(1): 12-21.
    Zhao B, Nie Z S, Huang Y, et al. 2014. Vertical motion of north China inferred from dense GPS neasurements. Journal of Geodesy and Geodynamics (in Chinese), 34(5): 35-39.
    Zheng T Y, Duan Y H, Xu W W, et al. 2017. A seismic model for crustal structure in north china craton. Earth and Planetary Physics, 1(1), 26-34.
    Zheng Y, Li Y D, Xiong X. 2012. Effective lithospheric thickness and its anisotropy in the North China Craton. Chinese Journal of Geophysics (in Chinese), 55(11): 3576-3590, doi: 10.6038/j.issn.0001-5733.2012.11.007.
    Zhu R X, Xu Y G, Zhu G, et al. 2012. Destruction of the north China Craton. Science China Earth Sciences, 55(10): 1565-1587.
    高山, 章军锋, 许文良等. 2009. 拆沉作用与华北克拉通破坏. 科学通报, 54(14): 1962-1973.
    高尚华, 佘雅文, 付广裕. 2016. 利用重力/GPS联合观测数据计算地壳垂向构造应力的新方法. 地球物理学报, 59(6): 2006-2013, doi: 10.6038/cjg20160607.
    何丽娟, 邱楠生. 2014. 热与克拉通破坏. 地质科学, 49(3): 728-738.
    胡刚, 滕吉文, 何正勤等. 2017. 华北克拉通东北部的远震S波走时层析成像研究. 地球物理学报, 60(5): 1703-1712, doi: 10.6038/cjg20170508.
    胡圣标, 何丽娟, 汪集旸. 2001. 中国大陆地区大地热流数据汇编(第三版). 地球物理学报, 44(5): 611-626.
    姜光政, 高堋, 饶松等. 2016. 中国大陆地区大地热流数据汇编(第四版). 地球物理学报, 59(8): 2892-2910, doi: 10.6038/cjg20160815.
    罗艳, 崇加军, 倪四道等. 2008. 首都圈地区莫霍面起伏及沉积层厚度. 地球物理学报, 51(4): 1135-1145.
    佘雅文, 付广裕, 王灼华等. 2017. 重力与地形数据揭示的巴颜喀拉块体东缘垂向构造应力场. 地球物理学报, 60(6): 2480-2492, doi: 10.6038/cjg20170635.
    汪集旸, 黄少鹏. 1990. 中国大陆地区大地热流数据汇编(第二版). 地震地质, 12(4): 351-366.
    王武星, 石耀霖, 张晶等. 2009. 河北文安5.1级地震前后重力场动态变化. 地震, 29(2): 40-47.
    杨百存, 秦四清, 薛雷等. 2017. 雄安新区地震危险性评估. 地球物理学报, 60(12): 4644-4654, doi: 10.6038/cjg20171209.
    杨亭, 傅容珊, 黄金水. 2013. 利用Moho地形导纳法(MDDF)反演中国大陆岩石圈有效弹性厚度. 地球物理学报, 56(6): 1877-1886, doi: 10.6038/cjg20130610.
    张林友, 刘琼颖, 何丽娟. 2016. 华北克拉通热结构差异性特征及其意义. 地球物理学报, 59(10): 3618-3626, doi: 10.6038/cjg20161009.
    赵博, 高原, 石玉涛. 2013. 用双差定位结果分析华北地区的地震活动. 地震, 33(1): 12-21.
    赵斌, 聂兆生, 黄勇等. 2014. 大规模GPS揭示的华北地区现今垂直运动. 大地测量与地球动力学, 34(5): 35-39.
    郑勇, 李永东, 熊熊. 2012. 华北克拉通岩石圈有效弹性厚度及其各向异性. 地球物理学报, 55(11): 3576-3590, doi: 10.6038/j.issn.0001-5733.2012.11.007.
    朱日祥, 徐义刚, 朱光等. 2012. 华北克拉通破坏. 中国科学: 地球科学, 42(8): 1135-1159.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700