用户名: 密码: 验证码:
隧道施工通风壁面粗糙度评定方法及其工程应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Assessment method to deal with the wall face roughness in the tunnel construction and its application
  • 作者:张恒 ; 孙建春 ; 向芬 ; 王路 ; 涂鹏
  • 英文作者:ZHANG Heng;SUN Jian-chun;XIANG Fen;WANG Lu;TU Peng;Key Laboratory of Transportation Tunnel Engineering,Ministry of Education, Southwest Jiaotong University;Key Laboratory of High-speed Railway,Ministry of Education,Southwest Jiaotong University;Department of Road and Bridge Engineering,Sichuan Vocational and Technical College of Communications;
  • 关键词:安全卫生工程技术 ; 施工通风 ; 壁面模型 ; 壁面粗糙度 ; 评定方法
  • 英文关键词:safety and health engineering technology;;construction ventilation;;wall model;;wall roughness;;evaluation method
  • 中文刊名:AQHJ
  • 英文刊名:Journal of Safety and Environment
  • 机构:西南交通大学交通隧道工程教育部重点实验室;西南交通大学高速铁路线路工程教育部重点实验室;四川交通职业技术学院道路与桥梁工程系;
  • 出版日期:2019-02-25
  • 出版单位:安全与环境学报
  • 年:2019
  • 期:v.19;No.109
  • 基金:国家自然科学基金项目(51508477);; 中央高校基本科研业务费专项资金资助项目(2682016CX012)
  • 语种:中文;
  • 页:AQHJ201901035
  • 页数:9
  • CN:01
  • ISSN:11-4537/X
  • 分类号:223-231
摘要
隧道通风数值计算中定义壁面粗糙程度的参数由粗糙高度和粗糙常数构成,参数的选取很难利用数学推导的方式进行研究。依托衢宁铁路鹫峰山隧道的施工通风项目,采用数值模拟并结合现场实测数据研究了隧道内壁面粗糙度的评定方法、取值和工程应用。结果表明:隧道壁面平均粗糙高度由隧道内实际开挖轮廓线和设计开挖轮廓线之间包络的面积与取样长度的比值确定,计算得到了隧道横断面平均粗糙高度为0. 191 m,纵向平均粗糙高度为0. 231 m;建立了粗糙常数Rc与粗糙单元间距、形状的关系,同时得到基本模型对应的Rc计算公式;基于典型理想壁面模型,以原模型面积减去理想模型的面积(绝对值)除以原模型面积所得值最小定义了最优简化模型,提出了关于壁面粗糙常数取值的计算方法,并以此计算出鹫峰山隧道壁面粗糙常数Rc为0.46。最终根据Rh和Rc的取值,采用三维数值模拟,分析了隧道内CO质量浓度不同时间段的分布规律。由于压入式通风自身的缺陷(无法突破长度瓶颈),且受现场布置及施工方式所限,通风距离超过3 000 m很难满足施工条件的需要,无法达到规定的洞内作业环境条件。因此,急需对现有的通风方式进行优化和调整。
        Based on the construction ventilation experience of Jiufengshan Tunnel of Quzhou-Ningbo Railway,the paper has done a profound analysis on the 3 aspects of the tunnel wall roughness,including the evaluation method,the value of the engineering itself and the method that has been adopted through a numerical simulation and field measurement. In the numerical calculation of the tunnel ventilation,we have defined the roughness height and roughness constant of the roughness parameters concerned through mathematical deduction and the method of such parameters chosen,which used to be difficult to use for the purpose. The results of our assessment show that the mean roughness height of the tunnel wall can be defined by the ratio of theenvelope part between the actual excavation contour and that of the designed excavation in addition to the sampling length. The mean roughness height of the tunnel cross the section proves to be equal to 0. 191 m with its longitudinal mean roughness height being 0. 231 m. Besides,the relation of the rough constant value Rcwith the rough unit shape and spacing has been set up with the formula of Rcbeing fit. Based on the standard wall model,the minimum of the original model area minus the ideal model( absolute value) divided by the original area can be defined as the simplified optimal model,from which the calculation method of Rccan be proposed. Through the same calculation,the wall roughness constant of the Jiufengshan Tunnel Rcshould be equal to 0. 46,whereas the distribution regularity of CO concentration in the different periods in the tunnel can be analyzed by means of the 3-D numerical simulation according to Rhand Rc. However,it is still difficult to meet the need of the construction condition,when the ventilation distance is over 3 000 m,hence,unable to achieve the required operating conditions in the tunnel due to the defects of the forced ventilation itself. Therefore,it is of urgent need to optimize the currently existing ventilation mode adjustment.
引文
[1] ZHANG Heng,SUN Jianchun,LIU Xiaocheng,et al. In-vestigation and analysis on the setting of cross passage andauxiliary passage in extra-long highway tunnel[J]. Proce-dia Engineering,2018,211:659-667.
    [2] ZHANG Heng,SUN Jianchun,LIN Fang,et al. Optimi-zation on energy saving ventilation of gallery-type com-bined construction shaft exhaust in extra long tunnel[J].Procedia Engineering,2017,205:1777-1784.
    [3] SUN Sanxiang(孙三祥),LEI Pengshuai(雷鹏帅),ZHANG Yunxia(张云霞). Comparison of the ventilationeffects between parallel-fans operation and that of serial-fans in partition technique in inclined shafts[J]. Journalof Safety and Environment(安全与环境学报),2014,14(1):78-81.
    [4] LIU Yixuan(刘艺璇),YANG Yongbin(杨永斌). Ex-perimental study of the influence of the longitudinal venti-lation on the fire parameters in highway tunnels[J]. Jour-nal of Safety and Environment(安全与环境学报),2017,17(5):1777-1782.
    [5] DIEGO I,TORNO S,TORAO J,et al. A practical useof CFD for ventilation of underground works[J]. Tunnel-ling and Underground Space Technology,2011,26(1):189-200.
    [6] TORNO S,TORAN珟O J,ULECIA M,et al. Conventionaland numerical models of blasting gas behavior in auxiliaryventilation of mining headings[J]. Tunnelling and Under-ground Space Technology,2013,34(2):73-81.
    [7] HARGREAVES D M,LOWNDES I S. The computationalmodeling of the ventilation flows within a rapid develop-ment drivage[J]. Tunnelling and Underground SpaceTechnology,2007,22(2):150-160.
    [8] QIU Yuliang(仇玉良),LI Ningjun(李宁军),XIEYongli(谢永利). Site test for ventilation resistance coef-ficient of shotcrete lining tunnel[J]. China Journal ofHighway and Transport(中国公路学报),2005,18(1):85-88.
    [9] WANG Xiaowen(王晓雯). Study on frictional loss forventilation of highway tunnels[J]. Technology of Highwayand Transport(公路交通技术),2004(3):87-91.
    [10] WANG Yaqiong(王亚琼),ZHANG Sulei(张素磊),XIA Fengyong(夏丰勇),et al. Test on surface friction-al resistant coefficient of ventilation shaft for tunnel[J].Journal of Chang’an University:Natural Science Edition(长安大学学报:自然科学版),2015,25(4):83-88,94.
    [11] JIANG Yajun(蒋雅君),TAO Shuangjiang(陶双江).Area-expanding coefficient evaluation method for rough-ness of shotcrete lining surfaces in tunnel engineering[J]. Journal of the China Railway Society(铁道学报),2010,32(3):95-99.
    [12] ZHANG Heng(张恒). Construction ventilation technolo-gy of complex network tunnel group(复杂网络隧洞群施工通风技术研究)[D]. Chengdu:Southwest JiaotongUniversity,2013.
    [13] LIU Chengwen(刘成文),LI Zhaomin(李兆敏),LIXicheng(李希成). Numerical simulation of the effect ofwall roughness on flow field in cyclones[J]. ChineseJournal of Environmental Engineering(环境工程学报),2011,5(10):2331-2336.
    [14] WEN Shaoyi(闻劭意),PENG Xiaofeng(彭晓峰),WUHailing(吴海玲). Local flow and heat transfer charac-teristics among roughness ribs in rectangular channel[J]. Journal of Chemical Industry and Engineering(China)(化工学报),2005,56(3):408-411.
    [15] HERWIG H,GLOSS D,WENTERODT T. Flow inchannels with rough walls-old and new concepts[J].Journal of China Jiliang University(中国计量学院学报),2008,19(4):296-303.
    [16] HERWIG H,GLOSS D,WENTERODT T. A new ap-proach to understanding and modelling the influence ofwall roughness on friction factors for pipe and channel flows[J]. Journal of Fluid Mechanics,2008,613:35-53.
    [17] ZOU Jiang(邹江),PENG Xiaofeng(彭晓峰),YANWeimou(颜维谋). Effects of roughness on fluid flowbehavior in ducts[J]. Journal of Chemical Industry andEngineering(China)(化工学报),2008,59(1):25-31.
    [18] ZHANG Heng(张恒),LIN Fang(林放),SUN Jian-chun(孙建春),et al. CFD analysis of tunnel construc-tion ventilation effect based on typical roughness model[J]. China Railway Science(中国铁道科学),2016,37(5):58-65.
    [19] ZHANG Zhiqiang,ZHANG Heng,TAN Yinjun,et al.Natural wind utilization in the vertical shaft of a super-long highway tunnel and its energy saving effect[J].Building and Environment,2018,145(11):140-152.
    [20] ZHANG Heng(张恒),WU Jin(吴瑾),CHEN Shougen(陈寿根),et al. Impact of the fan arrangement modeon the construction ventilation effect along the highly in-tensive gas tunnel[J]. Journal of Safety and Environ-ment(安全与环境学报),2018,18(5):1833-1840.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700