用户名: 密码: 验证码:
1992-2015年中亚五国土地覆盖与蒸散发变化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Changes in land cover and evapotranspiration in the five Central Asian countries from 1992 to 2015
  • 作者:阮宏威 ; 于静洁
  • 英文作者:RUAN Hongwei;YU Jingjie;Key Laboratory of Water Cycle and Related Land Surface Process, Institute of Geographic Sciences and Natural Resources Research, CAS;University of Chinese Academy of Sciences;
  • 关键词:中亚五国 ; 土地覆盖 ; 蒸散发 ; 时空变化 ; 蒸散耗水结构
  • 英文关键词:the five Central Asian countries;;land cover;;evapotranspiration;;spatio-temporal variation;;evapotranspiration water consumption structure
  • 中文刊名:DLXB
  • 英文刊名:Acta Geographica Sinica
  • 机构:中国科学院地理科学与资源研究所陆地水循环及地表过程重点实验室;中国科学院大学;
  • 出版日期:2019-07-19 16:23
  • 出版单位:地理学报
  • 年:2019
  • 期:v.74
  • 基金:中国科学院战略性先导科技专项(XDA20040302)~~
  • 语种:中文;
  • 页:DLXB201907003
  • 页数:13
  • CN:07
  • ISSN:11-1856/P
  • 分类号:16-28
摘要
1991年苏联解体,中亚五国独立使得土地覆盖与蒸散发格局发生深刻变化。以中亚五国为研究区,采用欧空局气候变化项目(CCI)土地覆盖和全球陆地数据同化系统(GLDAS)蒸散发数据,分析1992-2015年土地覆盖与蒸散发时空变化特征,进一步研究耕地蒸散耗水特征。结果表明:①中亚五国土地覆盖变化具有阶段性特征,耕地扩张引起土地覆盖格局变化。1992-2003年耕地快速增加(1.1万km2/a),林地和草地大幅减少。2003-2015年耕地增速趋缓(0.3万km2/a),林地和草地有一定恢复,裸地和水体持续减少,城镇用地持续增长。耕地共增加12.3万km2,林地和草地分别减少4.0万km2和2.3万km2,且集中于哈萨克斯坦中北部。裸地减少3.5万km2,集中于哈萨克斯坦西南部,水体减少3.1万km2,集中在咸海湖泊。乌兹别克斯坦耕地减少、裸地增加,吉尔吉斯斯坦、塔吉克斯坦和土库曼斯坦土地覆盖变化幅度较小;②中亚五国蒸散发变化与土地覆盖格局基本一致。蒸散发总体呈增加态势(6 mm/a),1992-2003年快速增加(11.3 mm/a),2003-2015年缓慢上升(2.4 mm/a)。中亚五国年蒸散发达到276.8 mm,东南部的吉尔吉斯斯坦(347.3 mm)和塔吉克斯坦(302.9 mm)最高,中北部的哈萨克斯坦(297.9mm)次之,西南部的乌兹别克斯坦(211.0 mm)和土库曼斯坦(150.0 mm)最低;③中亚五国蒸散耗水结构受耕地面积大小的影响。中亚五国耕地蒸散耗水的贡献由24.7%增至27.9%,土库曼斯坦耕地蒸散耗水仅占本国的11%,其他国家均超过25%。草地、林地和裸地的蒸散耗水贡献降低,但哈萨克斯坦、吉尔吉斯斯坦和塔吉克斯坦仍以草地和林地蒸散耗水为主(≥50%),土库曼斯坦(61.3%)和乌兹别克斯坦(46.4%)的裸地蒸散耗水占绝对优势。本文明确了中亚五国土地覆盖连续动态变化过程,细化各国土地覆盖与蒸散发特征及差异,增强对土地覆盖与蒸散发现状的认识,可为水土资源管理和生态环境保护提供数据参考。
        In 1991, the collapse of the Soviet Union and the independence of the five Central Asian countries led to profound changes in land cover and evapotranspiration pattern. This study used the five Central Asian countries as target areas. European Space Agency Climate Change Initiative and Global Land Data Assimilation System data were utilised to analyse the spatio-temporal variation of land cover and evapotranspiration from 1992 to 2015 and to further study the cropland evapotranspiration water consumption. This study investigated the continuous change of land cover, specified the characteristics of and differences in land cover and evapotranspiration, strengthened the understanding of land cover and evapotranspiration in the current situation, and provided data references for water and soil resource management and environmental protection. Results show that the changes in land cover in the five countries were characterised by stages, and cropland expansion modified the land cover pattern. From1992 to 2003, cropland increased rapidly(1.1 × 104 km2), whereas forest land and grassland decreased. From 2003 to 2015, cropland increased slowly(0.3 × 104 km2), whereas forest land and grassland increased slightly. Bare land and water bodies continued to decrease, whereas settlements continued to increase; the annual evapotranspiration was 276.8 mm.Evapotranspiration increased rapidly from 1992 to 2003(11.3 mm/a) and then slowly from2003 to 2015(2.4 mm/a). The evapotranspiration of cropland(352.2 mm) and grassland(322.1 mm) was significantly higher than that of forest land(254.7 mm) and bare land(173.2 mm).The evapotranspiration changes in the five Central Asian countries were consistent with the land cover patterns; the evapotranspiration water consumption of the five countries was affected by the cropland area. From 1992 to 2015, the water consumption of cropland evapotranspiration increased by 3.2%, and the contributions of grassland, forest land and bare land continued to decrease. The cropland of Turkmenistan accounted for only 11% of the total evapotranspiration water consumption, whereas that of the other countries accounted for more than 25%.
引文
[1] Zhu Mingming, Hou Xiyong, Ying Lanlan, et al. Study on evapotranspiration and its response to land use/cover change in Yellow River Delta. Journal of Water Resourses&Water Engineering, 2011, 22(2):25-30.[朱明明,侯西勇,应兰兰,等.黄河三角洲湿地蒸发蒸腾及其对土地利用/覆被变化的响应特征研究.水资源与水工程学报, 2011, 22(2):25-30.]
    [2] Liu Rong, Wen Jun, Wang Xin. Spatial-temporal variation and abrupt analysis of evapotranspiration over the Yellow River source region. Climatic and Environmental Research, 2016, 21(5):503-511.[刘蓉,文军,王欣.黄河源区蒸散发量时空变化趋势及突变分析.气候与环境研究, 2016, 21(5):503-511.]
    [3] Zhou Ti, Peng Zhiqing, Xin Xiaozhou, et al. Remote sensing research of evapotranspiration over heterogeneous surfaces:A review. Journal of Remote Sensing, 2016, 20(2):257-277.[周倜,彭志晴,辛晓洲,等.非均匀地表蒸散遥感研究综述.遥感学报, 2016, 20(2):257-277.]
    [4] Rosenberg N J, Blaine L B, et al. Microclimate:The Biological Environment. John Wiley&Sons, 1983.
    [5] Wang Liming, Zhou Yunxuan, Wang Qinjun. The relationship of land surface evapotranspiration and land use/cover change in the west Jilin Province. Journal of Jilin University(Earth Science Edition), 2009, 39(5):907-912.[王黎明,周云轩,王钦军.吉林省西部地表蒸散与土地利用/覆盖变化关系.吉林大学学报(地球科学版), 2009, 39(5):907-912.]
    [6] Wang Jie, Dong Gang, Zhang Feng. Effects of climatic and land use/cover change on evapotranspiration in the western Songnen Plain of Northeast China. Journal of Jilin University(Earth Science Edition), 2015, 38(2):375-384.[王洁,董刚,张峰.松嫩平原西部气候和土地利用变化对蒸散的影响.山西大学学报(自然科学版), 2015, 38(2):375-384.]
    [7] Jin Cui, Zhang Bai, Song Kaishan, et al. RS-based analysis on the effect of land use/cover change on regional evapotranspiration:A case study in Qian an county, Jilin province. Arid Zone Research, 2009, 39(5):734-743.[金翠,张柏,宋开山,等.土地利用/覆被变化对区域蒸散发影响的遥感分析:以吉林省乾安县为例.干旱区研究, 2009, 39(5):734-743.]
    [8] Zhang Dianjun. SEBAL model improved and study on the relationship between ET and LUCC[D]. Beijing:Beijing Forestry University, 2011.[张殿君. SEBAL模型区域优化及蒸散量与土地利用/覆被变化关系研究[D].北京:北京林业大学, 2011.]
    [9] Jilili Abuduwaili, Mubareke Ayoupu, Liu Dongwei, et al. Comparative analysis of the land water resources exploitation andits safety in the five countries of Central Asia. Journal of Glaciology and Geocryology, 2009, 31(5):960-968.[吉力力阿不都外力,木巴热克阿尤普,刘东伟,等.中亚五国水土资源开发及其安全性对比分析.冰川冻土, 2009, 31(5):960-968.]
    [10] Yao Haijiao, Zhou Hongfei, Su Fengchun. Water problems based on spatial matching patterns of water and land resources in Central Asia. Arid Zone Resrarch, 2013, 30(3):391-395.[姚海娇,周宏飞,苏风春.从水土资源匹配关系看中亚地区水问题.干旱区研究, 2013, 30(3):391-395.]
    [11] Deng Mingjiang, Ling Aihua, Zhang Yi, et al. Assessment of water resources development and utilization in the Five Central Asia countries. Advances in Earth Science, 2010, 25(12):1347-1356.[邓铭江,龙爱华,章毅,等.中亚五国水资源及其开发利用评价.地球科学进展, 2010, 25(12):1347-1356.]
    [12] Deng Mingjiang, Long Aihua. Water resources issue among the Central Asian countries around the Aral Sea:Conflict and cooperation. Journal of Glaciology and Geocryology, 2011, 33(6):1376-1390.[邓铭江,龙爱华.中亚各国在咸海流域水资源问题上的冲突与合作.冰川冻土, 2011, 33(6):1376-1390.]
    [13] Yao Haijiao, Zhou Hongfei. Game analysis of water resources strategy among the Central Asia Countries around the Aral Sea Basin. Arid Land Geography, 2013, 36(4):764-771.[姚海娇,周宏飞.中亚五国咸海流域水资源策略的博弈分析.干旱区地理, 2013, 36(4):764-771.]
    [14] Deng Mingjiang, Long Aihua, Li Xiangquan, et al. An analysis of the exploitation cooperation and problems of transboundary water resources in the five Central Asian countries. Advances in Earth Sciences, 2010, 25(12):1337-1346.[邓铭江,龙爱华,李湘权,等.中亚五国跨界水资源开发利用与合作及其问题分析.地球科学进展, 2010, 25(12):1337-1346.]
    [15] Yang Shengtian, Yu Xinyi, Ding Jiangli, et al. A review of water issues research in Central Asia. Acta Geographica Sinica, 2017, 72(1):79-93.[杨胜天,于心怡,丁建丽,等.中亚地区水问题研究综述.地理学报, 2017, 72(1):79-93.]
    [16] Zou Jie, Ding Jianli, Yang Shengtian. Spatial and temporal variation analysis of ecosystem water use efficiency in Central Asia and Xinjiang in recent 15 years. Geographical Research, 2017, 36(9):1742-1754.[邹杰,丁建丽,杨胜天.近15年中亚及新疆生态系统水分利用效率时空变化分析.地理研究, 2017, 36(9):1742-1754.]
    [17] Karthe D, Chalov S, Borchardt D. Water resources and their management in central Asia in the early twenty first century:status, challenges and future prospects. Environmental Earth Sciences, 2015, 73(2):487-499.
    [18] Jin Q, Wei J, Yang Z, et al. Irrigation-induced environmental changes around the Aral Sea:An integrated view from multiple satellite observations. Remote Sensing, 2017, 9(9):900.
    [19] Cheng Weiming, Zhou Chenghu, Liu Haijang. Oasis expansion and ecological environment evolution of the Manas River basin in 50 years. Chinese Science:D Series. 2005, 35(11):1074-1086.[程维明,周成虎,刘海江,等.玛纳斯河流域50年绿洲扩张及生态环境演变研究.中国科学:D辑, 2005, 35(11):1074-1086.]
    [20] Han Qifei, Luo Geping, Bai Jie, et al. Characteristics of land use and cover change in Central Asia in recent 30 years.Arid Land Geography, 2012, 35(6):909-918.[韩其飞,罗格平,白洁,等.基于多期数据集的中亚五国土地利用—覆盖变化分析.干旱区地理, 2012, 35(6):909-918.]
    [21] Chen X, Li B, Li Q, et al. Spatio-temporal pattern and changes of evapotranspiration in arid Central Asia and Xinjiang of China. Journal of Arid Land, 2012, 4(1):105-112.
    [22] Li Chaofan, Luo Geping, Li Junli, et al. Net primary productivity and actual evapotranspiration of Central Asia in recent20 years. Arid Land Geography, 2012, 35(6):65-73.[李超凡,罗格平,李均力,等.近20a中亚净初级生产力与实际蒸散发特征分析.干旱区地理, 2012, 35(6):65-73.]
    [23] De Beurs K, Henebry G, Owsley B, et al. Using multiple remote sensing perspectives to identify and attribute land surface dynamics in Central Asia 2001-2013. Remote Sensing of Environment, 2015, 170:48-61.
    [24] Chen Xi, Bai Jie, Li Xiaoyu, et al. Changes in land use/land cover and ecosystem services in Central Asia during1990-2009. Current Opinion in Environmental Sustainability, 2013, 5(1):116-127.
    [25] Zhou Kefa, Zhang Qing, Chen Xi, et al. The characteristics and trends of ecological environment changes in arid regions of central Asia. Chinese Science:D Series, 2006, 36(S2):133-139.[周可法,张清,陈曦,等.中亚干旱区生态环境变化的特点和趋势.中国科学:D辑, 2006, 36(S2):133-139.]
    [26] Li Z, Chen Y, Li W, et al. Potential impacts of climate change on vegetation dynamics in Central Asia. Journal of Geophysical Research:Atmospheres, 2015, 120(24):12345-12356.
    [27] Yao Junqiang, Yang Qin, Mao Weiyi, et al. Evaluation of the impacts of climate change and human activities on the hydrological environment in Central Asia. Journal of Glaciology and Geocryology, 2016, 38(1):222-230.[姚俊强,杨青,毛炜峄,等.气候变化和人类活动对中亚地区水文环境的影响评估.冰川冻土, 2016, 38(1):222-230.]
    [28] Li W, MacBean N, Ciais P, et al. Gross and net land cover changes in the main plant functional types derived from the annual ESA CCI land cover maps(1992-2015). Earth System Science Data, 2018, 10(1):119-234.
    [29] Pérez-Hoyos A, Rembold F, Kerdiles H, et al. Comparison of Global Land Cover Datasets for cropland monitoring.Remote Sensing, 2017, 9(11):1118.
    [30] Meier J, Zabel F, Mauser W. A global approach to estimate irrigated areas:A comparison between different data and statistics. Hydrology and Earth System Sciences, 2018, 22(2):1-16.
    [31] Defourny P, Bontemps C, Lamarche C, et al. Land Cover CCI:Product User Guide Version 2.0. 2017.
    [32] Defourny P, Schouten S, Bartalev S, et al. Accuracy Assessment of a 300 M Global Land Cover Map:The GlobCover Experience. Stresa, Italy:33rd International Symposium on Remote Sensing of Environment(ISRSE), 2009, May 4-8.
    [33] Tsendbazar N, Bruin S, Fritz S, et al. Spatial accuracy assessment and integration of global land cover datasets. Remote Sensing, 2015, 7:15804-15821.
    [34] Yang Y, Xiao P, Feng X, et al. Accuracy assessment of seven global land cover datasets over China, ISPRS J.Photogramm. Remote Sensing, 2017, 125:156-173.
    [35] Nowosad J, Stepsinki T, Netzel P. Global mapping of changes in landscapes and coverages of vegetation types from the ESA land cover 1992-2015 time series. 2018.
    [36] Wang F, Wang L, Koike T, et al. Evaluation and application of a fine‐resolution global data set in a semiarid mesoscale river basin with a distributed biosphere hydrological model. Journal of Geophysical Research:Atmospheres, 2011, 116(D21108). DOI:10.1029/2011JD015990.
    [37] Rodell M, Houser P R, Jambor U, et al. The global land data assimilation system. Bulletin of the American Meteorological Society, 2004, 85(3):381-394.
    [38] Yang K, Wang C, Bao H. Contribution of soil moisture variability to summer precipitation in the Northern Hemisphere.Journal of Geophysical Research:Atmospheres, 2016, 121(20):108-124.
    [39] Ji M, Huang J, Xie Y, et al. Comparison of dryland climate change in observations and CMIP5 simulations. Advances in Atmospheric Sciences, 2015, 32(11):1565-1574.
    [40] Ji L, Senay G B, Verdin J. Evaluation of the Global Land Data Assimilation System(GLDAS)air temperature data products. Journal of Hydrometeorology, 2015, 16(6):2463-2480.
    [41] Singh A, Behrangi A, Fisher J B, et al. On the desiccation of the South Aral Sea observed from spaceborne missions.Remote Sensing, 2018, 10(5):793.
    [42] Kariyeva J, van Leeuwen W J, Woodhouse C A. Impacts of climate gradients on the vegetation phenology of major land use types in Central Asia(1981-2008). Frontiers of Earth Science, 2012, 6(2):206-225.
    [43] Yang Shu, Tian Bao. A review on the ecological environment in Central Asia. Eastern European and Central Asian Research, 2002, 6(5):51-55.[杨恕,田宝.中亚地区生态环境问题述评.东欧中亚研究, 2002, 6(5):51-55.]
    [44] Baumann M, Kuemmerle, Elbakidze M, et al. Patterns and drivers of post-socialist farmland abandonment in Western Ukraine. Land Use Policy, 2011, 28(3):552-562.
    [45] Kuemmerle T, Hostert P, Radeloff V, et al. Cross-border comparison of post-socialist farmland abandonment in the Carpathians. Ecosystems, 2008, 11(4):614.
    [46] Fan Binbin, Luo Geping, Hu Zengyun. Land resource development and utilization in Central Asia. Arid Land Geography, 2012, 35(6):928-937.[范彬彬,罗格平,胡增运,等.中亚土地资源开发与利用分析.干旱区地理, 2012,35(6):928-937.]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700