用户名: 密码: 验证码:
不同弹性模量的基台--种植体组合对周围成骨性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of abutment-implant combinations with different elastic moduli on osteogenic performance
  • 作者:林逸凌 ; 邢辉 ; 董安平 ; 佘欢 ; 杜大帆 ; 许浩 ; 汪东红 ; 黄海军 ; 疏达 ; 祝国梁 ; 孙宝德
  • 英文作者:LIN Yi-ling;XING Hui;DONG An-ping;SHE Huan;DU Da-fan;XU Hao;WANG Dong-hong;HUANG Hai-jun;SHU Da;ZHU Guo-liang;SUN Bao-de;School of Materials Science and Engineering,Shanghai Jiao Tong University;Shanghai Key Lab of Advanced High-temperature Materials and Precision Forming;Shanghai Institute of Applied Physics,Chinese Academy of Sciences;State Key Laboratory of Metal Matrix Composites,Shanghai Jiao Tong University;
  • 关键词:弹性模量 ; 牙种植体 ; 聚醚醚酮 ; 基台 ; 应力分布
  • 英文关键词:elastic modulus;;dental implant;;poly-ether-ether-ketone;;abutment;;stress distribution
  • 中文刊名:BJKD
  • 英文刊名:Chinese Journal of Engineering
  • 机构:上海交通大学材料科学与工程学院;上海市先进高温材料及其精密成形重点实验室;中国科学院上海应用物理研究所;上海交通大学金属基复合材料国家重点实验室;
  • 出版日期:2019-06-06 09:58
  • 出版单位:工程科学学报
  • 年:2019
  • 期:v.41;No.302
  • 基金:国家自然科学基金资助项目(51831011,51871152)
  • 语种:中文;
  • 页:BJKD201906010
  • 页数:7
  • CN:06
  • ISSN:10-1297/TF
  • 分类号:90-96
摘要
利用有限元分析软件计算了不同静力作用下的多种基台-种植体周围骨组织的应力分布.模拟结果显示,基台-种植体组合中Ti6Al4V钛合金-聚醚醚酮(TC4-PEEK)相对于其他实验组其应力集中程度现象可以有效降低,周围骨组织的应力分布较为均匀,最大应力值为40~60 MPa.在轴向加载条件下,不同基台-种植体系统中PEEK种植体的应力水平较小,而周围骨组织应力水平较大;在斜向45°加载条件下,相对于其他两种基台-种植体系统,TC4-PEEK的应力水平更低,其周围骨组织中的皮质骨承受的最大应力值为55 MPa,松质骨承受的最大应力值为5 MPa,综合来看的应力水平最小,有助于骨沉积和成骨量增加,从而有效提高种植体的界面稳定性.
        Many factors affect the success of dental implant surgery,such as surgical trauma,excessive chewing pressure,material performance mismatch,and improper abutment-implant connection. Among these factors,stress shielding caused by the mismatch of elastic modulus of the material is a major problem affecting the biomechanical compatibility of the implant. Also,the elastic modulus of the dental implant directly affects its binding to the surrounding support bone and stress distribution. Presently,most of the abutmentimplant systems on the market use the same material,with TC4 being popular because of its good biocompatibility. However,the elastic modulus of titanium implants is quite different from that of surrounding bone tissue; this difference can cause stress shielding. Additionally,stress concentration may cause implant surgery to fail. The abutment-implant with materials of different elastic modulus directly affect the stability and stress distribution of the bone tissue around the implant; thus,understanding the stress distribution under loading will help to establish a better elastic modulus combination of the dental implant system. In this paper,finite element analysis software was used to calculate the stress distribution of various abutments-implants under different loading conditions. Compared to other experimental abutment-implant systems,the simulation results show that Ti6Al4 V abutment-(poly-ether-ether-ketone)(TC4-PEEK) can effectively reduce stress concentration,resulting in uniform stress distribution of surrounding bone tissue whose maximum stress value is 40-60 MPa. The stress level of PEEK implants in different abutment-implant systems is smaller under axial loading condition,whereas the stress level of surrounding bone tissue is larger. In the oblique direction of 45° loading condition,compared to two other abutment-implant systems,the stress level of the TC4-PEEK is lower,and the maximum stress value of the cortical and the cancellous bones in the surrounding bone tissue is 55 and 5 MPa,respectively,and the stress level is the smallest; such conditions contribute to the increase of bone deposition and bone formation,effectively improving the interface stability of the implant.
引文
[1]Oh T J,Yoon J,Misch C E,et al.The causes of early implant bone loss:myth or science?J Periodontol,2002,73(3):322
    [2]Lin Y.Current dental implant design and its clinical importance.West China J Stomatol,2017,35(1):18(林野.当代牙种植体设计进步与临床意义.华西口腔医学杂志,2017,35(1):18)
    [3]Guan H L,Van Staden R C,Loo Y C,et al.Evaluation of multiple implant bone parameters on stress characteristics in the mandible under traumatic loading conditions.Int J Oral Maxillofac Impl,2010,25(3):461
    [4]Pérez-Pevida E,Brizuela-Velasco A,Chávarri-Prado D,et al.Biomechanical consequences of the elastic properties of dental implant alloys on the supporting bone:finite element analysis.Bio Med Res Int,2016,2016:1850401
    [5]Lin C L,Chang S H,Wang J C.Finite element analysis of biomechanical interactions of a tooth-implant splinting system for various bone qualities.Chang Gung Med J,2006,29(2):143
    [6]Schwitalla A D,Abou-Emara M,Spintig T,et al.Finite element analysis of the biomechanical effects of PEEK dental implants on the peri-implant bone.J Biomech,2015,48(1):1
    [7]Lacefield W R.Material characteristics of uncoated/ceramic-coated implant materials.Adv Dent Res,1999,13(1):21
    [8]Bodic F,Amouriq Y,Gayet‐Delacroix M,et al.Relationships between bone mass and micro-architecture at the mandible and iliac bone in edentulous subjects:a dual X-ray absorptiometry,computerised tomography and microcomputed tomography study.Gerodontology,2012,29(2):e585
    [9]Jaffee R I.The physical metallurgy of titanium alloys.Prog Met Phys,1958,7:65
    [10]Macedo J P,Pereira J,Faria J,et al.Finite element analysis of stress extent at peri-implant bone surrounding external hexagon or Morse taper implants.J Mech Behav Biomed Mater,2017,71:441
    [11]Cook S D,Rust-Dawicki A M.Preliminary evaluation of titanium-coated PEEK dental implants.J Oral Implantol,1995,21(3):176
    [12]Corvelli A A,Biermann P J,Roberts J C.Design,analysis,and fabrication of a composite segmental bone replacement implant.JAdv Mater,1997,28(3):2
    [13]Kurtz S M,Devine J N.PEEK biomaterials in trauma,orthopedic,and spinal implants.Biomaterials,2007,28(32):4845
    [14]Han C M,Lee E J,Kim H E,et al.The electron beam deposition of titanium on polyetheretherketone(PEEK)and the resulting enhanced biological properties.Biomaterials,2010,31(13):3465
    [15]Strecha J,Jurkovic R,Siebert T,et al.Fixed bicortical screw and blade implants as a non-standard solution to an edentulous(toothless)mandible.Int J Oral Sci,2010,2:105
    [16]Nissan J,Ghelfan O,Gross O,et al.The effect of crown/implant ratio and crown height space on stress distribution in unsplinted implant supporting restorations.J Oral Maxillofac Surg,2011,69(7):1934
    [17]Wang M Q,He S G.Oral Anatomy and Physiology.6th Ed.Beijing:People's Medical Publishing House,2012(王美青,何三纲.口腔解剖生理学.6版.北京:人民卫生出版社,2012)
    [18]Frost H M.A 2003 update of bone physiology and Wolff's law for clinicians.Angle Orthodontist,2004,74(1):3
    [19]Schwitalla A D,Spintig T,Kallage I,et al.Pressure behavior of different PEEK materials for dental implants.J Mech Behav Biomed Mater,2016,54:295
    [20]Schwitalla A D,Spintig T,Kallage I,et al.Flexural behavior of PEEK materials for dental application.Dent Mater,2015,31(11):1377
    [21]Sampaio M,Buciumaeanu M,Henriques B,et al.Comparison between PEEK and Ti6Al4V concerning micro-scale abrasion wear on dental application.J Mech Behav Biomed Mater,2016,60:212
    [22]Watari F,Yokoyama A,Omori M,et al.Biocompatibility of materials and development to functionally graded implant for biomedical application.Compos Sci Technol,2004,64(6):893

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700