用户名: 密码: 验证码:
氟碳铈矿伴生元素氟和铝的回收利用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Recycling of Fluorine and Aluminum Associated with Bastnaesite
  • 作者:姚佳 ; 夏磊
  • 英文作者:YAO Jia;XIA Lei;R&D Department, Leshan Shenghe Rare Earths Co.Ltd.;
  • 关键词:氟碳铈矿 ; 氟化铝 ; 二氧化碳 ; 资源综合利用
  • 英文关键词:bastnaesite;;aluminum fluoride;;carbondioxide;;comprehensive utilization of resources
  • 中文刊名:XTZZ
  • 英文刊名:Chinese Rare Earths
  • 机构:乐山盛和稀土股份有限公司研发部;
  • 出版日期:2019-06-15
  • 出版单位:稀土
  • 年:2019
  • 期:v.40;No.242
  • 基金:四川省科技计划资助项目(2015GZ0054)
  • 语种:中文;
  • 页:XTZZ201903010
  • 页数:6
  • CN:03
  • ISSN:15-1099/TF
  • 分类号:77-82
摘要
分析了氟碳铈矿冶炼分离过程铝元素的行为,优化了富集方案,提出了氟碳铈矿中铝、氟资源的综合利用方案。通过对中和渣碱转处理和工艺主体碱转,使70%~80%的铝和85%以上的氟进入废碱水,再引入额外的含铝矿物后进行二氧化碳沉淀,使氟和铝沉淀率达到99.6%以上。含铝矿物可以是尾矿或铝含量高的其他冶金固废,提高了资源利用率。二氧化碳来源为氟碳铈矿焙烧尾气、碳酸盐焙烧分解尾气等。二氧化碳沉淀过程产生的上清液为低氟低铝碳酸钠溶液,可以被碱转工艺有效回用,达到降低碱耗,废水循环利用的目的。
        The behavior of aluminum elements in the process of bastnaesite separation was analyzed, and the comprehensive utilization scheme of aluminum and fluoride in bastnaesite was proposed. It was found that 70% to 80% of aluminum and more than 85% of fluorine entered into alkali wastewater from process of alkaline.treatment of leachate of bastmaesite and neutralized residue. Extra aluminum-containing minerals were introduced into the wastewater.By using carbon dioxide as precipitant,more than 99.6% of aluminum and fluorine in the wastewater was precipitated.
引文
[1] 吴文远,边雪.稀土冶金技术[M].北京:科学出版社,2012.19.Wu W Y,Bian X.Rare Earth Metallurgy Technology[M].Beijing:Science Press,2012.19.
    [2] 杨斌清,张贤平.世界稀土生产与消费结构分析[J].稀土,2014,35(1):110-118.Yang B Q,Zhang X P.Analysis of global rare earth production and consumption structure [J].Chinese Rare Earths,2014,35(1):110-118.
    [3] Tetsuya Ozaki,Toshiki Miyazawa,Kuniaki Murase,Ken-ichi Machida,Gin-ya Adachi.Vapor phase extraction and separation of rare earths from bastnaesite concentrate mediated by vapor complexes[J].Journal of Alloys & Compounds,1996,245(1):10-14.
    [4] 李良才,葛星坊,李林森.攀西稀土矿湿法冶炼技术现状与进展[J].稀土,1999,20(4):53-58.Li L C,Ge X F,Li L S.Development of hydrometallurgical processes for Panxi bastnaesite[J].Chinese Rare Earths,1999,20(4):53-58.
    [5] 徐光宪.稀土[M].北京:冶金工业出版社,1995.377-379.Xu G X.Rare Earths[M].Beijing:Metallurgical Industry Press,1995.377-379.
    [6] Feng X L,Long Z Q,Cui D L,Wang L S,Huang X W,Zhang G C.kinetics of rare earth leaching from roasted ore of bastnaesite with sulfuric acid[J].Transactions of Nonferrous Metals Society of China,2013,23(3):849-854.
    [7] 王星堂,虞顺众.基础稀土化学[M].乌鲁木齐:新疆大学出版社,1989.251.Wang X T,Yu S Z.Basic Rare Earth Chemistry[M].Xinjiang:Xinjiang University Press,1989.251.
    [8] Zheng Q,Bian X,Wu W.An Environmental friendly coal-ca(oh)2-naoh roasting decomposition strategy for Bayan Obo Tailings[J].Metall Res Technol,2017,114(2):201.
    [9] 张晓伟.包头混合稀土精矿中氟碳铈矿浸出及其氟铝资源转化研究[D].北京:北京化工大学,2014.10-11.Zhang X W.Study On The Basnaesite Leaching Of Baotou Mixed Rare Earth Concentrate And Resources Conversion Of Fluoride And Aluminum[D].Beijin:Beijing University of Chemical Technology,2014.10-11.
    [10] 周静,徐燕,陈龙明.攀西德昌氟碳铈矿精矿氧化焙烧反应制备碳酸稀土研究[J].稀土,2000,21(2):19-25.Zhou J,Xu Y,Chen L M.Preparation of RE carbonate from Dechang bastnasite concentrate by oxidation baking decomposition[J].Chinese Rare Earths,2000,21(2):19-25.
    [11] 陈建利,柳凌云,董福柱,谢军,王永利,贾相平.硫酸焙烧分解包头混合稀土精矿添加铁泥的研究[J].稀土,2012,33(3):96-97.Chen J L,Liu L Y,Dong F Z,Xie J,Wang Y L,Jia X P.Addition of iron mud to Baotou mixed rare earth concentrate in its roasting decomposition with sulfuric acid[J].Chinese Rare Earths,2012,33(3):96-97.
    [12] 黄小卫,张永奇,李红卫.我国稀土资源的开发利用现状与发展趋势[J].中国科学基金,2011,25(3):134-137.Huang X W,Zhang Y Q,Li H W.Development trend and research progress of rare earth extraction in China[J].Bulletin of National Natural Science Foundation of China,2011,25(3):134-137.
    [13] 赵仕林,何春光,曹植菁,刘咏,赵凡.氟碳铈矿低污染冶炼工艺研究[J].稀土,2003,24(4):32-35.Zhao S L,He C G,Cao Z J,Liu Y,Zhao F.New technology of smelting bastnaesite[J].Chinese Rare Earths,2003,24(4):32-35.
    [14] 乔军,张存瑞,柳召刚,郝先库.溶液中F-与Ce4+络合行为的研究[J].稀土,1997,18(3):64-67.Qiao J,Zhang C R,Liu Z G,Hao X K.Complexation behavior of fluorine (I) with cerium (IV) in solution[J].Chinese Rare Earths,1997,18(3):64-67.
    [15] 李梅,柳召刚,吴锦绣.稀土元素及其分析化学[M].北京:化学工业出版社,2009.146-148.Li M,Liu Z G,Wu J X.Rare-earth Element and Its Analytical Chemistry[M].Beijing:Chemical Industry Press,2009.146-148.
    [16] 农志藩.氟化铝和冰晶石生产过程中的最佳质量控制[J].无机盐工业,2015,47(10):48-53.Nong Z F.The best quality control of production process of aluminium-fluoride and synthetic cryolite[J].Inorganic Chemicals Industry,2015,47(10):48-53.
    [17] He J G,Li Y,Xue X X,Ru H Q,Huang X W,Yang H.Leaching of fluorine and rare earths from bastnaesite calcined with aluminum hydroxide and the recovery of fluorine as cryolite[J].Rsc Adv,2017,7(23):14053-14059.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700