用户名: 密码: 验证码:
热风及过热蒸汽煤调湿工艺比较
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Comparison Between Hot Air and Superheated Steam Coal Moisture Control Processes
  • 作者:吴中华 ; 尹建树 ; 刘兵 ; 梁石军 ; 张世博
  • 英文作者:WU Zhonghua;YIN Jianshu;LIU Bing;LIANG Shijun;ZHANG Shibo;College of Mechanical Engineering,Tianjin University of Science and Technology;International Joint Research Center of Lowcarbon Green Process Equipment;
  • 关键词:炼焦煤 ; 煤调湿 ; 热风干燥 ; 过热蒸汽干燥 ; 能耗
  • 英文关键词:coking coal;;coal moisture control;;hot air drying;;superheated steam drying;;energy consumption
  • 中文刊名:MTZH
  • 英文刊名:Coal Conversion
  • 机构:天津科技大学机械工程学院;天津科技大学低碳绿色过程装备国际联合研究中心;
  • 出版日期:2018-11-15
  • 出版单位:煤炭转化
  • 年:2018
  • 期:v.41;No.166
  • 基金:国家自然科学基金资助项目(31471618);; 国家重点研发计划项目(2017YFD0400904-4)
  • 语种:中文;
  • 页:MTZH201806005
  • 页数:7
  • CN:06
  • ISSN:14-1163/TQ
  • 分类号:32-38
摘要
针对现有热风和烟道气煤调湿工艺存在易爆风险的问题,提出了一种过热蒸汽为干燥介质的煤调湿新工艺.利用自制穿流干燥装置,以热风和过热蒸汽为干燥介质对炼焦煤进行干燥调湿.研究了不同干燥介质温度、料层厚度和干燥介质流量条件下的炼焦煤干燥特性,计算了热风和过热蒸汽煤调湿工艺处理单位质量物料所需外部输入能耗,绘制了炼焦煤水分变化曲线和能耗分布等值图.结果表明:提高干燥介质温度、减少料层厚度、增大干燥介质流量均有利于炼焦煤干燥,缩短煤调湿过程时间;相比于热风干燥介质,利用过热蒸汽对炼焦煤进行调湿,调湿速率可提高40%以上,能耗可降低35%以上.
        Hot air or flue gas are usually used as the drying media in the existing coalmoisture control(CMC)process,which may cause explosion danger due to the oxygen in the drying media.To avoid this possible explosion,a new coal moisture control process was proposed where the superheated steam is used as the drying medium.The hot air and superheated steam drying experiments of the coking coal were carried out using a self-made through-flow drying setup respectively.Parametric studies were conducted to study the effect of the drying medium temperatures,layer thicknesses,and drying medium flow rates on the drying characteristics of coking coal.Based on the experimental data,the energy consumptions per unit mass material were calculated and compared for the hot air and superheated steam coal moisture control processes.Meanwhile,the corresponding drying curves and the equivalent map of energy consumption distribution were drawn.The results show that increasing the temperature of the drying medium,reducing the thickness of the material layer,and increasing the flow rate of the drying medium are all beneficial to the drying of the coking coal and can shorten the time of coal moisture control process,which reduces the coal moisture content from initial 12%to 6%;compared to the hot air drying medium,the superheated steam can increase the rate of moisture control by more than40%,and reduce the energy consumption by more than 35%.
引文
[1]王胜春,张德祥,陆鑫,等.中国炼焦煤资源与焦炭质量的现状与展望[J].煤炭转化,2011,34(3):92-96.WANG Shengchun,ZHANG Dexiang,LU Xin,et al.Current Situation and Prospect of Coking Coal Resources and Coke Quality in China[J].Coal Conversion,2011,34(3):92-96.
    [2]杨文彪.中国炼焦产业发展现状[C]∥苏、鲁、皖、赣、冀五省金属学会第十四届焦化学术年会论文集.镇江:江苏省金属学会,2008:1-8.YANG Wenbiao.Current Status of China’s Coking Industry Development[C]∥Proceedings of the Fourteenth Annual Coking Research Society of the Jiangsu,Shandong,Anhui,Jiangxi and Hebei Provinces.Zhenjiang:The Society of Metals of Jiangsu Province,2008:1-8.
    [3]李冰晶,仝纪龙,马卫东,等.炼焦行业新旧污染物排放标准的差异分析[J].环境污染与防治,2013,35(5):105-109.LI Bingjing,TONG Jilong,MA Weidong,et al.Disparity Analysis of Emission Standards for New and Old Pollutants in Coking Industry[J].Environmental Pollution and Control,2013,35(5):105-109.
    [4]YANG Yu,WANG Quanhai,LU Xiaofeng,et al.Combustion Behaviors and Pollutant Emission Characteristics of Low Calorific Oil Shale and Its Semi-coke in a Labscale Fluidized Bed Combustor[J].Applied Energy,2018,211:631-638.
    [5]尚建波.提高焦化水处理设施出水水质的措施[J].江苏冶金,2004,32(5):44-45.SHANG Jianbo.Measures to Improve the Water Quality of Coking Water Treatment Facilities[J].Jiangsu Metallurgy,2004,32(5):44-45.
    [6]王海风,张春霞,上官方钦.煤调湿技术的现状和发展趋势[J].冶金环境保护,2011(4):33-36.WANG Haifeng,ZHANG Chunxia,SHANGGUAN Fangqin.Status and Development Trend of Coal Moisture Control Technology[J].Metallurgical Environmental Protection,2011(4):33-36.
    [7]李帅俊,李晓光.煤调湿技术在国内外发展与应用[J].干燥技术与设备,2010,8(6):249-255.LI Shuaijun,LI Xiaoguang.Development and Application of Coal Moisture Control Technology at Home and Abroad[J].Drying Technology and Equipment,2010,8(6):249-255.
    [8]LIU Yuping,HIROAKI O.Energy-efficient Fluidized Bed Drying of Low-rank Coal[J].Fuel Processing Technology,2017,155:200-208.
    [9]张全,朱五星.湘钢焦化工序配煤调湿技术方案的研究[J].煤炭转化,2001,24(1):76-78.ZHANG Quan,ZHU Wuxing.The Research of Scheme About Coal Moisture Control in the Xiangtan Iron and Steel Corperation[J].Coal Conversion,2001,24(1):76-78.
    [10]谭绍栋,陈静春.内置热流化床煤调湿工艺[J].柳钢科技,2013,41(1):23-25.TAN Shaodong,CHEN Jingchun.Coal Moistening Process for Built-in Thermal Fluid Bed[J].Science and Technology of Liuzhou Steel,2013,41(1):23-25.
    [11]郭玉华,师学锋,高建军,等.多管回转式煤调湿工艺速度场模拟与试验研究[J].燃料与化工,2012,43(6):5-9.GUO Yuhua,SHI Xuefeng,GAO Jianjun,et al.Research on Velocity Field Simulation and Test for Multi-tube Rotary Type Coal Moisture Control Process[J].Fuel and Chemical Processes,2012,43(6):5-9.
    [12]杨东伟,金晶,郁鸿凌,等.新型梯级筛分内加热流化床CMC工艺能效分析[J].煤炭转化,2017,40(3):64-69.YANG Dongwei,JIN Jing,YU Hongling,et al.Energy Efficiency Analysis on a New CMC Technology of Cascade Sieving and Fluidized Bed with Immersed Heating Tubes[J].Coal Conversion,2017,40(3):64-69.
    [13]王锋,高建军,徐洪军,等.一种振动流化床式煤调湿工艺的半工业化试验[J].冶金能源,2013,32(1):11-14.WANG Feng,GAO Jianjun,XU Hongjun,et al.Semi-industry Test of the Vibration Fluidized Type CMC[J].Metallurgical Energy,2013,32(1):11-14.
    [14]张国庆,张琼芳,刘勇刚.焦炉烟道废气-流化床式煤调湿技术的应用[J].燃料与化工,2010,41(6):9-11.ZHANG Guoqing,ZHANG Qiongfang,LIU Yonggang.Application of Fluidized Bed Type Coal Moisture Control Technology with Coke Oven Flue Waste Gas[J].Fuel and Chemical Processes,2010,41(6):9-11.
    [15]常建,王子兵,刘立伟,等.蔚州长焰煤干燥特性试验研究[J].内蒙古煤炭经济,2017,25(1):129-131.CHANG Jian,WANG Zibing,LIU Liwei,et al.Experimental Research on Drying Characteristics of Long Flame Coal in Yuzhou[J].Inner Mongolia Coal Economy,2017,25(1):129-131.
    [16]黄珊,王修俊,沈畅萱.白萝卜薄层热风干燥特性及其数学模型[J].食品与机械,2017,33(8):137-143.HUANG Shan,WANG Xiujun,SHEN Changxuan.Drying Characteristics and Mathematical Model on Hot-air Drying of Chinese Radish Slices[J].Food and Machinery,2017,33(8):137-143.
    [17]孙瑞晨,王学成,罗俊,等.污泥常压过热蒸汽干燥装置设计及干燥试验[J].环境工程,2015,33(7):109-112.SUN Ruichen,WANG Xuecheng,LUO Jun,et al.Superheated Steam Dryer and Experiment for Drying of Sludge at Atmosphere Pressure[J].Environmental Engineering,2015,33(7):109-112.
    [18]乔柱,关二旗,卞科.玉米过热蒸汽干燥特性及干燥模型构建[J].河南工业大学学报(自然科学版),2017,38(1):5-11.QIAO Zhu,GUAN Erqi,BIAN Ke.Characteristics of Maize in Superheated Steam Drying and Model Construction[J].Journal of He’nan University of Technology(Natural Science Edition),2017,38(1):5-11.
    [19]张绪坤,姚斌,苏志伟,等.城市污泥过热蒸汽与热风干燥特性[J].环境工程学报,2015,9(10):5049-5054.ZHANG Xukun,YAO Bin,SU Zhiwei,et al.Drying Characteristics of Thin Layer Sewage Sludge in Superheated Steam and Drying Hot Air Drying[J].Chinese Journal of Environmental Engineering,2015,9(10):5049-5054.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700