用户名: 密码: 验证码:
应力应变下TC2钛合金在模拟海水环境中的腐蚀行为
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Corrosion Behavior of TC2 Titanium Alloy under Strain-stress in Simulated Seawater
  • 作者:边美华 ; 彭家宁 ; 尹立群 ; 梁庆国 ; 张兴森
  • 英文作者:BIAN Mei-hua;PENG Jia-ning;YIN Li-qun;LIANG Qing-guo;ZHANG Xing-sen;Electric Power Research Institute of Guangxi Power Grid Co., Ltd;
  • 关键词:TC2钛合金 ; 电化学 ; 形变 ; 应力腐蚀
  • 英文关键词:TC2 titanium alloy;;electrochemistry;;deformation;;stress corrosion crack
  • 中文刊名:BMJS
  • 英文刊名:Surface Technology
  • 机构:广西电网有限责任公司电力科学研究院;
  • 出版日期:2019-04-20
  • 出版单位:表面技术
  • 年:2019
  • 期:v.48
  • 基金:广西电网有限责任公司科技项目(GXKJXM20160322)~~
  • 语种:中文;
  • 页:BMJS201904040
  • 页数:9
  • CN:04
  • ISSN:50-1083/TG
  • 分类号:284-292
摘要
目的研究TC2钛合金在模拟海水中的表面电化学及腐蚀行为,以及不同形变对其的影响。方法制备U形试样,进行模拟海水浸泡试验,采用电位测试、交流阻抗及极化曲线测试、扫描电镜(SEM)、X射线衍射(XRD)等方法进行分析。结果在240 d模拟海水中浸泡试验期间,无形变TC2钛合金表面钝化膜阻抗值随时间延长,先迅速增加,后缓慢增加,腐蚀电位持续升高,因此其表面电化学反应下降,腐蚀速率较低。45°形变TC2钛合金试样的表面钝化膜阻抗值先略微上升,后下降,最终低于初始阻抗值。90°形变试样的表面钝化膜阻抗值持续下降。经过240d浸泡后,无形变的试样表面出现微小的点蚀,45°形变试样表面点蚀密度增加,90°形变试样表面垂直压应力方向出现裂纹。XRD结果显示,形变处Ca~(2+)、Mg~(2+)等离子的吸附增加,这可能与表面粗糙度增大,TC2钛合金表面活性增加有关。结论在模拟海水环境中,无应变试样耐腐蚀性较强,应变导致TC2钛合金表面钝化膜破裂,点蚀增加,甚至出现裂纹,增加了TC2钛合金的应力腐蚀敏感性。
        The work aims to study the electrochemical and corrosion behavior of TC2 titanium alloy in simulated seawater and the effect of deformation. U-shaped sample was prepared and simulated seawater immersion test was conducted. Potential test, polarization curve test, electrochemical impedance spectroscopy, SEM and XRD were employed for analysis. During 240 d immersion test in simulated seawater, the impedance value of non-shaped sample surface passive film rapidly increased initially and then slowly increased as time prolonged, and the corrosion potential continued to increase, so the surface electrochemical reaction decreased and the corrosion rate was low. The impedance value of 45° deformation sample surface passive film initially increased slightly and then decreased and finally dropped below the initial impedance values. The impedance value of 90° deformation sample surface passive film steady declined during test period. After 240 d immersion test, minor pitting appeared on non-shaped sample surface, the pitting density of 45° deformation sample surface increased, and 90° deformation sample surface had cracks perpendicular to the direction of stress. XRD results showed that the adsorption of Ca~(2+) and Mg~(2+) ion increased at the deformation, which may be related to the surface roughness and surface activity of TC2 titanium alloy increase. In simulated seawater, the non-shaped TC2 titanium alloy has strong anti-corrosion properties and strain causes breakage, pitting and even cracks on passive film of TC2 titanium alloy, thus increasing stress corrosion sensitivity of TC2 titanium alloy.
引文
[1]LI X G,ZHANG D W,LIU Z Y,et al.Materials science:share corrosion data[J].Nature,2015,527(7579):441-442.
    [2]于宇,李嘉琪.国内外钛合金在海洋工程中的应用现状与展望[J].材料开发与应用,2018,33(3):111-116.YU Yu,LI Jia-qi.Current application and prospect of titanium alloys in marine engineering[J].Development and application of materials,2018,33(3):111-116.
    [3]KASUGA T,NOGAMI M,NIINOMI M,et al.Bioactive calcium phosphate invert glass-ceramic coating on betatype Ti-29Nb-13Ta-4.6Zr alloy[J].Biomaterials,2003,24(2):283-290.
    [4]张文毓.钛及钛合金在海水淡化中的应用[J].新材料产业,2009(3):30-33.ZHANG Wen-yu.Application of titanium and titanium alloy in seawater desalination[J].Advanced materials industry,2009(3):30-33.
    [5]黄金昌.钛在滨海石油生产中的应用[J].钛工业进展,1996(6):34-35.HUANG Jin-chang.Application of titanium in coastal oil production[J].Titanium industry progress,1996(6):34-35.
    [6]ORYSHCHENKO A S,GORYNIN I V,LEONOV V P,et al.Marine titanium alloys:Present and future[J].Inorganic materials applied research,2015,6(6):571-579.
    [7]徐伟.钛及钛合金在氯碱工业中的应用[J].氯碱工业,1988(6):40-44.XU Wei.Application of titanium and titanium alloy in chlor-alkali industry[J].Chlor-alkali industry,1988(6):40-44.
    [8]余存烨.耐蚀钛合金的发展[J].钛工业进展,2003(1):12-19.YU Cun-ye.Development of corrosion resistant titanium alloys[J].Titanium industry progress,2003(1):12-19.
    [9]王海杰,王佳,彭欣,等.钛合金在3.5%Na Cl溶液中的腐蚀行为[J].中国腐蚀与防护学报,2015,35(1):75-80.WANG Hai-jie,WANG Jia,PENG Xin,et al.Corrosion behavior of three titanium alloys in 3.5%NaCl solution[J].Journal of Chinese society for corrosion and protection,2015,35(1):75-80.
    [10]LIU Z Y,LI X G,DU C W,et al.Local additional potential model for effect of strain rate on SCC of pipeline steel in an acidic soil solution[J].Corrosion science,2009,51(12):2863-2871.
    [11]XU L Y,CHENG Y F.An experimental investigation of corrosion of X100 pipeline steel under uniaxial elastic stress in a near-neutral pH solution[J].Corrosion science,2012,59(3):103-109.
    [12]XU L Y,CHENG Y F.Corrosion of X100 pipeline steel under plastic strain in a neutral pH bicarbonate solution[J].Corrosion science,2012,64(8):145-152.
    [13]LIU Z Y,LI X G,CHENG Y F.Electrochemical state conversion model for occurrence of pitting corrosion on a cathodically polarized carbon steel in a near-neutral pHsolution[J].Electrochimica acta,2011,56(11):4167-4175.
    [14]WANG Y,ZHAO W,AI H,et al.Effects of strain on the corrosion behaviour of X80 steel[J].Corrosion science,2011,53(9):2761-2766.
    [15]LIU Z Y,LI X G,DU C W,et al.Stress corrosion cracking behavior of X70 pipe steel in an acidic soil environment[J].Corrosion science,2008,50(8):2251-2257.
    [16]DIETZEL W,PFUFF M,JUILFS G G.Hydrogen permeation in plastically deformed steel membranes[J].Materials science,2006,42(1):78-84.
    [17]GB/T 15748-2013.船用金属材料电偶腐蚀试验方法[S].GB/T 15748-2013.The method of galvanic corrosion test for metallic ship materials[S].
    [18]杨超,张慧霞,郭为民,等.添加双氧水对高强度低合金钢在海水中腐蚀影响的研究[J].中国腐蚀与防护学报,2013,33(3):205-210.YANG Chao,ZHANG Hui-xia,GUO Wei-min,et al.Effects of H2O2 addition on corrosion behavior of high strength low-alloy steel in seawater[J].Journal of chinese society for corrosion and protection,2013,33(3):205-210.
    [19]DAVIS J.Corrosion:Understanding the basics[M].United States:ASM International,2000.
    [20]ZHOU Y L,NIINOMI M,AKAHORI T,et al.Corrosion resistance and biocompatibility of Ti-Ta alloys for biomedical applications[J].Materials science&engineering A,2005,398(1):28-36.
    [21]姜应律,吴荫顺.用极化曲线研究钛合金在水、醇中腐蚀机理的差异[J].腐蚀科学与防护技术,2005,17(3):154-158.JIANG Ying-lyu,WU Yin-shun.Study of mechanism of electrochemical reaction for titanium alloy TC4 in NaCl solution and ethanol by polarization curve[J].Corrosion science and protection technology,2005,17(3):154-158.
    [22]易新中,李德川.钛合金在含氯离子切削液中的应力腐蚀[J].航空工艺技术,1993(6):38-39.YI Xin-zhong,LI De-chuan.Stress corrosion of titanium alloy in chloride containing cutting fluid[J].Aeronautical manufacturing technology,1993(6):38-39.
    [23]HOLLIS A C,SCULLY J C.Stress corrosion cracking and hydrogen embrittlement of titanium in methanol-iodine solutions[J].Corrosion science,1993,34(5):821-835.
    [24]EBTEHAJ K,HARDIE D,PARKINS R N.The stress corrosion and pre-exposure embrittlement of titanium in methanolic solutions of hydrochloric acid[J].Corrosion science,1985,25(6):415-429.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700