用户名: 密码: 验证码:
上保护层开采对下部特厚煤层移动变形规律及保护效果考察研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on movement deformation laws and protection effect of lower ultra-thick coal seam affected by upper protective layer mining
  • 作者:徐刚 ; 王磊 ; 金洪伟 ; 王强
  • 英文作者:XU Gang;WANG Lei;JIN Hongwei;WANG Qiang;College of Safety Science and Engineering,Xi'an University of Science and Technology;Shanxi Lu'an Group Wuyang Coal Mine;
  • 关键词:保护层开采 ; 相似模拟 ; 位移变化 ; 应力变化 ; 保护效果
  • 英文关键词:protective layer mining;;similar simulation;;displacement change;;stress change;;protection effect
  • 中文刊名:LDBK
  • 英文刊名:Journal of Safety Science and Technology
  • 机构:西安科技大学安全科学与工程学院;山西潞安集团五阳煤矿;
  • 出版日期:2019-06-28 16:05
  • 出版单位:中国安全生产科学技术
  • 年:2019
  • 期:v.15;No.138
  • 基金:国家重点研发计划项目(2018YFC0807805,2018YFC0808303);; 国家自然科学基金项目(51404189,51404190);; 陕西省自然科学基础研究计划(2019JM-072);陕西省自然科学基础研究计划项目(2015JQ5191)
  • 语种:中文;
  • 页:LDBK201906010
  • 页数:6
  • CN:06
  • ISSN:11-5335/TB
  • 分类号:38-43
摘要
选取海石湾煤矿特厚煤层6124工作面为研究对象,为了确定上保护层开采对下部特厚煤层6124工作面的影响,运用FLAC3D软件对上保护层开采后被保护层应力和位移变化规律进行了数值模拟研究。研究结果表明:被保护层被保护区域位移沿垂直方向呈"拱形"分布,被保护层最大位移变化量为354 mm,变化范围在160~354 mm之间;被保护层被保护区域的应力变化呈"V"形分布,被保护层最大拉应力变化量为0. 489 MPa,变化范围在0. 314~0. 489 MPa之间,最大压应力变化量为31. 3 MPa,变化范围在25. 8~31. 3 MPa之间;实施上保护层开采后,煤层瓦斯抽采率提高了39. 5%,残余瓦斯含量降到7. 16 m~3/t,残余瓦斯压力降到0. 58 MPa,该参数的确定为海石湾煤矿特厚高瓦斯煤层的合理开采提供了一定的理论指导。
        Taking 6124 working face in ultra-thick coal seam of Haishiwan coal mine as the research object,in order to determine the influence of upper protective layer mining on 6124 working face in lower ultra-thick coal seam,the numerical simulation study on the change laws of stress and displacement of the protected layer after the upper protective layer mining was carried out by using FLAC~(3D) software. The results showed that the displacement of the protected area in the protected layer presented the arch-shape distribution in the vertical direction,the change of the maximum displacement of the protective layer was 354 mm,and the change range was between 160-354 mm. The stress change of the protected area in the protected layer presented the V-shape distribution,the change of the maximum tensile stress of the protective layer was 0. 489 MPa,and the change range was between 0. 314-0. 489 MPa. The change of the maximum pressure stress was 31. 3 MPa,and the change range was between 25. 8-31. 3 MPa. After the implementation of upper protective layer mining,the gas extraction rate of coal seam increased by 39. 5%,the residual gas content reduced to 7. 16 m~3/t,and the residual gas pressure reduced to 0. 58 MPa. The determination of this parameter provides certain theoretical guidance for the rational exploitation of the ultra-thick coal seam containing high gas in Haishiwan coal mine.
引文
[1]谢和平,周宏伟,薛东杰,等.我国煤与瓦斯共采:理论、技术与工程[J].煤炭学报,2014,39(8):1391-1397.XIE Heping,ZHOU Hongwei,XUE Dongjie,et al.Coal and gas co-mining in China:theory,technology and engineering[J].Journal of Coal,2014,39(8):1391-1397.
    [2]刘海波.极薄保护层钻采上覆突出煤层变形与透气性分布规律及在卸压瓦斯抽采中的应用[D].徐州:中国矿业大学,2009.
    [3]薛东杰,周宏伟,孔琳.采动条件下被保护层瓦斯卸压增透机理研究[J].岩土工程学报,2012,34(10):1910-1916.XUE Dongjie,ZHOU Hongwei,KONG Lin.Study on the mechanism of gas unloading and transmittance of protective layer under mining condition[J].Journal of Geotechnical Engineering,2012,34(10):1910-1916.
    [4]高召宁,孟祥瑞.采动条件下煤层底板变形破坏特征研究[J].矿业安全与环保,2010,37(3):17-20.GAO Zhaoning,MENG Xiangrui.Study on deformation and failure characteristics of coal seam bottom plate under mining condition[J].Mining Safety and Environmental Protection,2010,37(3):17-20.
    [5]江记记.多煤层下保护层开采保护范围的研究[D].重庆:重庆大学,2012.
    [6]施峰,王宏图,舒才.间距对上保护层开采保护效果影响的相似模拟实验研究[J].中国安全生产科学技术,2017,13(12):138-144.SHI Feng,WANG Hongtu,SHU Cai.Similar simulation experimental study on the influence of spacing on the protection effect of upper protective layer mining[J].Journal of Safety Science and Technology,2017,13(12):138-144.
    [7]王海峰,方亮,程远平.基于岩层移动的下邻近层卸压瓦斯抽采及应用[J].采矿与安全工程学报,2012,30(1):128-131.WANG Haifeng,FANG Liang,CHENG Yuanping.Gas extraction and application of pressure discharge under adjacent layer based on rock layer movement[J].Journal of Mining and Safety engineering,2012,30(1):128-131.
    [8]肖鹏,李树刚,林海飞,等.基于物理相似模拟实验的覆岩采动裂隙演化规律研究[J].中国安全生产科学技术,2014,10(4):18-23.XIAO Peng,LI Shugang,LIN Haifei,et al.Study on the evolution Law of overlying rock mining fracture based on physical similarity simulation experiment[J].Journal of Safety Science and Technology,2014,10(4):18-23.
    [9]彭信山.急倾斜近距离下保护层开采岩层移动及卸压瓦斯抽采研究[D].焦作:河南理工大学,2015.
    [10]王文,李化敏,高保彬,等.远距离保护层开采煤层渗透特性及瓦斯抽采技术研究[J].中国安全生产科学技术,201410(11):84-89.WANG Wen,LI Huamin,GAO Baobin,et al.Study on permeability characteristics and gas extraction technology of coal seam mining by long distance protective layer[J].Journal of Safety Science and Technology,2014,10(11):84-89.
    [11]王凯,郭灵强,俞启香,等.综采工作面水力超前卸压防突数值模拟与试验研究[J].煤炭学报,2007,32(8):832-837.WANG Kai,GUO Lingqiang,YU Qixiang,et al.Numeri-cal simulation and experimental study on hydraulic advance discharge and anti-protrusion in fully mechanized mining face[J].Journal of Coal,2007,32(8):832-837.
    [12]陈琳.兰州高坪区和低丘缓坡区压实黄土力学性质及其工程应用[D].北京:中国地质大学(北京),2018.
    [13]秦宪波.深井高应力软岩巷道围岩稳定性控制研究[D].青岛:山东科技大学,2011.
    [14]崔炎彬.煤层群重复采动下被保护层卸压瓦斯渗流规律实验研究[D].西安:西安科技大学,2017.
    [15]马国强,陈如忠,崔刚,等.近距离突出煤层群上保护层瓦斯综合治理技术[J].煤炭科学技术,2015,43(3):52-55.MA Guoqiang,CHEN Ruzhong,CUI Gang,et al.Comprehensive gas control technology of protective layer on close-range protruding coal seam group[J].Coal Science and Technology,2015,43(3):52-55.
    [16]程详,赵光明,李英明,等.软岩保护层开采卸压增透效应及瓦斯抽采技术研究[J].采矿与安全工程学报,2018,35(5):1045-1053.CHENG Xiang,ZHAO Guangming,LI Yingming,et al.Study on the effect of unloading and transmittance of soft rock protective layer and the technology of gas extraction[J].Journal of Mining and Safety Engineering,2018,35(5):1045-1053.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700