用户名: 密码: 验证码:
富锂材料Li_(1.2)[Mn_(0.54)Ni_(0.13)Co_(0.13)]O_2的Mo掺杂及电化学性能研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Electrochemical performance of lithium-rich material Li_(1.2)[Mn_(0.54)Ni_(0.13)Co_(0.13)]O_2 by Mo doping
  • 作者:杨凯 ; 耿萌萌 ; 叶俊 ; 高运兴 ; 钟健健
  • 英文作者:YANG Kai;GENG Mengmeng;YE Jun;GAO Yunxing;ZHONG Jianjian;China Electric Power Research Institute;State Grid Shandong Electric Power Company Tai'an Power Supply Company;School of Metallurgical and Ecological Engineering,University of Science and Technology Beijing;
  • 关键词:锂离子电池 ; 富锂锰基正极材料 ; 钼掺杂 ; 共沉淀-煅烧法 ; 首圈库伦效率 ; 晶格氧
  • 英文关键词:lithium ion battery;;lithium-rich manganese-based cathode material;;molybdenum substitution;;coprecipitation-calcination method;;initial Coulombic efficiency;;lattice oxygen
  • 中文刊名:DZAL
  • 英文刊名:Electronic Components and Materials
  • 机构:中国电力科学研究院有限公司;国网山东电力公司泰安供电公司;北京科技大学冶金与生态工程学院;
  • 出版日期:2019-03-27 09:42
  • 出版单位:电子元件与材料
  • 年:2019
  • 期:v.38;No.325
  • 基金:国家电网公司科技项目资助(DG71-16-025)
  • 语种:中文;
  • 页:DZAL201903003
  • 页数:9
  • CN:03
  • ISSN:51-1241/TN
  • 分类号:11-19
摘要
富锂锰基正极材料由于其高理论比容量和较高的工作电压深受人们的青睐,然而循环稳定性差、电压衰减严重和倍率性能差等一系列问题限制了其在锂离子电池中的商业应用。为了改善其电化学性能,利用共沉淀-煅烧法成功制备了不同摩尔量钼元素掺杂的富锂锰基正极材料Li_(1.2)[Mn_(0.54-)_xNi_(0.13)Co_(0.13)Mo_x]O_2(x=0,0.01,0.02,0.03,0.04)。钼元素主要取代富锂材料Li_(1.2)[Mn_(0.54)Ni_(0.13)Co_(0.13)]O_2结构中的锰位,由XRD衍射结果可知,钼元素的掺杂保持了材料本体的晶体结构。富锂材料经掺杂改性表现出优异的电化学性能,Li_(1.2)[Mn_(0.51)Ni_(0.13)Co_(0.13)Mo_(0.03)]O_2在0.5C倍率下循环100圈的放电比容量达到200.6 mAh/g,容量保持率为89.27%;Li_(1.2)[Mn_(0.52)Ni_(0.13)Co_(0.13)Mo_(0.02)]O_2的首圈库伦效率由74.41%提高到81.47%。这主要是由于钼的掺入抑制了晶格氧的脱出,提高了材料的结构稳定性。电化学阻抗测试也进一步表明钼掺杂可以有效提高材料的导电性和界面电化学反应活性。
        Due to the ultra high theoretical specific capacity and higher operating voltage, lithium-rich layer oxides were highly appreciated.However, the problems including poor cycle stability, severe voltage attenuation and deficient rate performance restrict the commercial application of the material.Lithium-rich layered cathode materials Li_(1.2)[Mn_(0.54-)_xNi_(0.13)Co_(0.13)Mo_x]O_2(x=0,0.01,0.02,0.03,0.04) with different contents of molybdenum were successfully synthesized via the coprecipitation-calcination method to improve the electrochemical properties.Molybdenum was introduced into the structure of Li_(1.2)[Mn_(0.54)Ni_(0.13)Co_(0.13)]O_(2 )to substitute the Mn sites.It is proved that the substitution of Mo maintains the crystalline structure of the materials according to the analysis of XRD results.The modified materials show the excellent electrochemical performance.Li_(1.2)[Mn_(0.51)Ni_(0.13)Co_(0.13)Mo_(0.03)]O_2 material still maintains 200.6 mAh/g with the capacity retention ratio of 89.72% after 100 cycles at 0.5 C;The initial Coulombic effeciency of Li_(1.2)[Mn_(0.52)Ni_(0.13)Co_(0.13)Mo_(0.02)]O_2 sample increases from 74.41% to 81.47%, which can be ascribed to the fact that the substitution of Mo suppresses the release of lattice oxygen so as to improve the stability of the structure.It is also indicated that the electrical conductivity and interfacial electrochemical reaction activity of the materials are improved owing to molybdenum-doping through the explanation of the electrochemical impedance spectroscopy.
引文
[1]Sun Y, Liu N, Cui Y.Promises and challenges of nanomaterials for lithium-based rechargeable batteries[J].Nature Energy, 2016, 1(7):16071.
    [2]Hy S, Liu H, Zhang M, et al.Performance and design considerations for lithium excess layered oxide positive electrode materials for lithium ion batteries[J].Energy & Environmental Science, 2016,9(6):1931-1954.
    [3]Qiu B, Yin C, Xia Y, et al.Synthesis of three-dimensional nanoporous Li-rich layered cathode oxides for high volumetric and power energy density lithium-ion batteries[J].ACS Applied Materials & Interfaces, 2017,9(4):3661-3666.
    [4]Yabuuchi N, Yoshii K, Myung S, et al.Detailed studies of a high-capacity electrode material for rechargeable batteries Li2MnO3-LiCo1/3Ni1/3Mn1/3O2[J].Journal of the American Chemical Society, 2011,133(12):4404-4419.
    [5]Ding F, Li J, Deng F, et al.Surface heterostructure induced by PrPO4 modification in Li1.2[Mn0.54Ni0.13Co0.13]O2 cathode material for high-performance lithium-ion batteries with mitigating voltage decay[J].ACS Applied Materials & Interfaces, 2017,9(33):27936-27945.
    [6]Yang K, Ding F, Liu Y, et al.Effect of Nb5+ charge neutralization substitution on the electrochemical performance of lithium-rich layered oxides[J].Ionics, 2018,24(10):1-9.
    [7]Zheng Z, Guo X, Zhong Y, et al.Host structural stabilization of Li1.232Mn0.615Ni0.154O2 through K-doping attempt:toward superior electrochemical performances[J].Electrochimica Acta, 2016,188:336-343.
    [8]Qing R, Shi J, Zhang X, et al.Enhancing the kinetics of Li-rich cathode materials through the pinning effects of gradient surface Na+ doping[J].Advanced Energy Materials, 2016,6(6):1501914.
    [9]Xu H, Deng S, Chen G.Improved electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 by Mg doping for lithium ion battery cathode material[J].Journal of Materials Chemistry A, 2014, 2(36):15015-15021.
    [10]Nayak P K, Grinblat J, Levi M, et al.Al doping for mitigating the capacity fading and voltage decay of layered Li and Mn-rich cathodes for Li-ion batteries[J].Advanced Energy Materials, 2016,6(8):1502398.
    [11]Yu T, Li J, Xu G, et al.Improved cycle performance of Li[Li0.2Mn0.54Co0.13Ni0.13]O2 by Ga doping for lithium ion battery cathode material[J].Solid State Ionics, 2017,301:64-71.
    [12]Song B, Zhuo C, Wang H, et al.Advances in sustain stable voltage of Cr-doped Li-rich layered cathodes for lithium ion batteries[J].Journal of the Electrochemical Society, 2014,161(10):A1723-A1730.
    [13]Xu G, Xue Q, Li J, et al.Understanding the enhanced electrochemical performance of samarium substituted Li[Li0.2Mn0.54-xSmxCo0.13Ni0.13]O2 cathode material for lithium ion batteries[J].Solid State Ionics, 2016,293:7-12.
    [14]Qiao Q, Qin L, Li G, et al.Sn-stabilized Li-rich layered Li(Li0.17Ni0.25Mn0.58)O2 oxide as a cathode for advanced lithium-ion batteries[J].Journal of Materials Chemistry A, 2015,3(34):17627-17634.
    [15]Knight J C, Nandakumar P, Kan W H, et al.Effect of Ru substitution on the first charge-discharge cycle of lithium-rich layered oxides[J].Journal of Materials Chemistry A, 2015,3(5):2006-2011.
    [16]Liu J, Wang S, Ding Z, et al.The effect of boron doping on structure and electrochemical performance of lithium-rich layered oxide materials[J].ACS Applied Materials & Interfaces, 2016,8(28):18008-18017.
    [17]Li B, Yan H, Ma J, et al.Manipulating the electronic structure of Li-rich manganese-based oxide using polyanions:towards better electrochemical performance[J].Advanced Functional Materials, 2014,24(32):5112-5118.
    [18]Manikandan P, Periasamy P, Jagannathan R.Microstructure-twinning and hexad multiplet(s) in lithium-rich layered cathode materials for lithium-ion batteries[J].RSC Advances, 2014,4(76):40359-40367.
    [19]Gao J, Kim J, Manthiram A.High capacity Li[Li0.2Mn0.54Ni0.13Co0.13]O2-V2O5 composite cathodes with low irreversible capacity loss for lithium ion batteries[J].Electrochemistry Communications, 2009,11(1):84-86.
    [20]Johnson C S,Li N,Lefief C,et al.Synthesis, characterization and electrochemistry of lithium battery electrodes:xLi2MnO3·(1-x)LiMn0.333Ni0.333Co0.333O2(0≤x≤0.7) [J].Chemistry of Materials, 2008,20(19):6095-6106.
    [21]Venkateswara R C, Soler J, Katiyar R, et al.Investigations on electrochemical behavior and structural stability of Li1.2Mn0.54Ni0.13Co0.13O2 lithium-ion cathodes via in-situ and ex-situ Raman spectroscopy[J].The Journal of Physical Chemistry C, 2014,118(26):14133-14141.
    [22]Kang S H, Thackeray M M.Enhancing the rate capability of high capacity xLi2MnO3·(1-x)LiMO2 (M=Mn, Ni, Co) electrodes by Li-Ni-PO4 treatment[J].Electrochemistry Communications, 2009,11(4):748-751.
    [23]Gao Y,Ma J,Wang X,et al.Improved electron/Li-ion transport and oxygen stability of Mo-doped Li2MnO3[J].Journal of Materials Chemistry A, 2014,2(13):4811.
    [24]Wu F,Li Q,Bao L,et al.Role of LaNiO3 in suppressing voltage decay of layered lithium-rich cathode materials[J].Electrochimica Acta, 2018,260:986-993.
    [25] Wang S, Li Y, Wu J, et al.Toward a stabilized lattice framework and surface structure of layered lithium-rich cathode materials with Ti modification[J].Physical Chemistry Chemical Physics, 2015,17(15):10151-10159.
    [26] Chen H, Hu Q, Peng W, et al.New insight into the modification of Li-rich cathode material by stannum treatment[J].Ceramics International, 2017,43(14):10919-10926.
    [27] Pan W,Peng W,Guo H, et al.Effect of molybdenum substitution on electrochemical performance of Li[Li0.2Mn0.54Co0.13Ni0.13]O2 cathode material[J].Ceramics International, 2017,43(17):14836-14841.
    [28] Yuan X, Xu Q, Liu X, et al.Excellent rate performance and high capacity of Mo doped layered cathode material Li[Li0.2Mn0.54Ni0.13Co0.13]O2 derived from an improved coprecipitation approach[J].Electrochimica Acta, 2016,207:120-129.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700