用户名: 密码: 验证码:
TiCl_4和O_2在金红石型TiO_2(110)表面的吸附机理
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The adsorption mechanisms of TiCl_4 and O_2 on the surface of rutile TiO_2(110)
  • 作者:田林 ; 李荣兴 ; 俞小花 ; 黄俊 ; 林艳 ; 庄晓东
  • 英文作者:TIAN Lin;LI Rongxing;YU Xiaohua;HUANG Jun;LIN Yan;ZHUANG Xiaodong;Kunming Metallurgy Research Institute;State Key Laboratory of Pressure Hydrometallurgy Technology of Associated Non-ferrous Metal Resources;Metallurgy and Energy Engineering College, Kunming University of Science and Technology;
  • 关键词:密度泛函理论 ; TiO_2 ; 分子吸附 ; 反应机理
  • 英文关键词:density functional theory;;TiO_2;;co-adsorption;;reaction mechanism
  • 中文刊名:GNCL
  • 英文刊名:Journal of Functional Materials
  • 机构:昆明冶金研究院;共伴生有色金属资源加压湿法冶金技术国家重点实验室;昆明理工大学冶金与能源工程学院;
  • 出版日期:2019-05-30
  • 出版单位:功能材料
  • 年:2019
  • 期:v.50;No.428
  • 基金:国家自然科学基金资助项目(51404123);; 云南省应用基础研究计划资助项目(2013FC003,2016FA054,2016FA055)
  • 语种:中文;
  • 页:GNCL201905023
  • 页数:8
  • CN:05
  • ISSN:50-1099/TH
  • 分类号:144-151
摘要
基于密度泛函理论(DFT)中广义梯度近似(GGA)下的BLYP、PBE泛函,研究了TiCl_4、O_2在金红石型TiO_2(110)晶胞表面上不同位点的吸附,以及TiCl_4和O_2分子共吸附后在最稳定吸附构型上的解离过程。结果表明,O_2分子在TiO_2(110)晶胞表面上最稳定的吸附位点为氧空位,O_2分子吸附在氧空位后,其中一个O原子与Ti5c原子成键形成桥位氧(O_(bri));另一个O原子形成O增原子(O_(ada)),吸附能为-11.58 kJ/mol,Mulliken电荷布居分析表明O_2分子向表面转移了0.12 eV电荷;TiCl_4分子在TiO_2(110)晶胞表面上最稳定的吸附位点为桥氧位,吸附能为-48.64 kJ/mol,Mulliken电荷布居分析表明TiCl_4分子向晶胞表面转移了0.26 eV电荷;TiCl_4与O_2在各自最佳的吸附位上吸附后,TiCl_4分子在O增原子(O_(ada))的作用下按—TiCl_4→—TiCl_3→—TiCl_2→—TiCl的主要路径发生解离,在TiCl_4分子解离过程中,正反应方向上的活化能垒均小于逆反应方向上的活化能垒,说明TiCl_4分子的解离过程为放热反应。
        In the paper, based on the BLYP and PBE functionalities of generalized gradient approximation(GGA) in density functional theory(DFT), the adsorption of TiCl_(4 )and O_2 molecules on the surface of rutile TiO_2(110) and their dissociation process in the most stable adsorption configuration were studied. The results show that the most stable adsorption site of O_(2 )molecule on the surface of TiO_2(110) cell was oxygen vacancy. After the O_2 molecule was adsorbed on the oxygen vacancy, one O atom formed a bridge with the Ti5 c atom, and the other O atom was added at the same time. The adsorption energy was-11.58 kJ/mol. The Mulliken charge population analysis shows that the charge transfer of O_2 molecule to the surface was 0.12 eV. The most stable adsorption site on the unit cell was the bridge oxygen site with an adsorption energy of-48.64 kJ/mol. The Mulliken charge population analysis shows that the TiCl_4 molecule transfered 0.26 eV charge to the unit cell surface. TiCl_4 molecules were dissociated by the path of —TiCl_4→—TiCl_3→—TiCl_2→—TiCl under the action of O atom(O_(ada)) after TiCl_4 molecules were adsorbed on the adsorbed sites. In the TiCl_4 molecule dissociation process, the energy barriers in the positive reaction direction were less than those in the reverse reaction direction, indicating that the dissociation process of TiCl_4 molecules was exothermic.
引文
[1] Chen Zhaohua.Production and application technology of titanium dioxide[M].Beijing:Chemical Industry Press,2006:6-12(in Chinese).陈朝华,刘长河.钛白粉生产及应用技术[M].北京:化学工业出版社,2006:6-12.
    [2] Fu Yijiang.Development status and market trend of titanium dioxide industry in 2015[J].China Coatings,2016,31(4):56-57(in Chinese).付一江.2015年钛白粉行业的发展现状及市场走势[J].中国涂料,2016,31(4):56-57.
    [3] Liu Feisheng,Xie Gang,Yu Zhanliang,et al.Research and development of titania by chlorination technology[J].Materials Review,2014,28(15):113-118(in Chinese).刘飞生,谢刚,于站良,等.氯化法生产钛白工艺的研究进展[J].材料导报,2014,28(15):113-118.
    [4] Liu Fang,Fan Fengtao,Lyu Yucui,et al.Research progress on photocatalytic degradation of organic pollutants by graphene/TiO2 composite materials[J].CIESC Journal,2016,5(5):1635-1634(in Chinese).刘芳,樊丰涛,吕玉翠,等.石墨烯/TiO2复合材料光催化降解有机污染物的研究进展[J].化工学报,2016,5(5):1635-1643.
    [5] H?mmerle-Uhl J,H?ller Y,Uhl A,et al.First-principles thermochemistry for gas phase species in an industrial rutile chlorinator[J].Journal of Physical Chemistry A,2010,114(43):11825.
    [6] Shi L Y,Li C Z,Chen A P,et al.Morphology and structure of nanosized TiO2 particles synthesized by gas-phase reaction[J].Materials Chemistry & Physics,2000,66(1):51-57.
    [7] Smith R D,Bennett R A,Bowker M.Measurement of the surface-growth kinetics of reduced TiO2 (110) during reoxidation using time-resolved scanning tunneling microscopy[J].Phys Rev B,2002,66(3):035409.
    [8] Spicer P T,Chaoul O,Tsantilis S,et al.Titania formation by TiCl4 gas phase oxidation,surface growth and coagulation[J].Journal of Aerosol Science,2002,33(1):17-34.
    [9] Qu Z W,Kroes G J.Theoretical study of the electronic structure and stability of titanium dioxide clusters (TiO2)n with n=1-9 [J].Journal of Physical Chemistry B,2006,110(18):8998-9007.
    [10] Zhou E,Wang Zhi,Wen Jiankang,et al.Oxidation kinetics of titanium tetrachloride in vapor phase[J].Chinese Journal of Rare Metals,2007,31(5):656-660(in Chinese).周峨,王志,温建康,等.TiCl4高温气相氧化过程的动力学研究[J].稀有金属,2007,31(5):656-660.
    [11] Ghoshtagore R N.Mechanism of heterogeneous deposition of thin film rutile[J].Journal of the Electrochemical Society,1970,117(4):85-89.
    [12] Pratsinis S E,Spicer P T.Competition between gas phase and surface oxidation of TiCl4 during synthesis of TiO2 particles[J].Chemical Engineering Science,1998,53(10):1861-1868.
    [13] West R H,Celnik M S,Inderwildi O R,et al.Toward a comprehensive model of the synthesis of TiO2 particles from TiCl4[J].Industrial & Engineering Chemistry Research,2007,46(19):6147-6156.
    [14] Totton T S,Shirley R,Kraft M.First-principles thermochemistry for the combustion of TiCl4 math container loading mathjax in a methane flame[J].Proceedings of the Combustion Institute,2011,33(1):493-500.
    [15] Li Lemin,Liu Junwan,Jin Bihui.Density functional theory[J].China Basic Science,2007,7(3):27-28(in Chinese).黎乐民,刘俊婉,金碧辉.密度泛函理论[J].中国基础科学,2007,7(3):27-28.
    [16] Wen Mingfen,Wang Qiuping,Chen Jing,et al.Study on the crystal transformation of nano-titania[J].Journal of Functional Materials,2004,35(5):651-653(in Chinese).文明芬,王秋萍,陈靖,等.纳米二氧化钛晶型互变的研究[J].功能材料,2004,35(5):651-653.
    [17] Diebold U.The surface science of titanium dioxide[J].Surface Science Reports,2003,48(5):53-229.
    [18] Wang Zhuo.Theoretical studies of vacancy and molecule adsorption on titanium dioxide surface[D].Hefei:University of Science and Technology of China,2010(in Chinese).汪卓.二氧化钛表面缺陷及分子吸附的理论研究[D].合肥:中国科学技术大学,2010.
    [19] Smith R D,Bennett R A,Bowker M.Measurement of the surface-growth kinetics of reduced TiO2 (110) during reoxidation using time-resolved scanning tunneling microscopy[J].Physical Review B,2002,66(3):035409.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700