用户名: 密码: 验证码:
G波段扩展互作用速调管的理论分析与设计
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Theoretical analysis and design of G-band extended interaction klystron amplifier
  • 作者:曾造金 ; 马乔生 ; 胡林林 ; 蒋艺 ; 胡鹏 ; 陈洪斌
  • 英文作者:Zeng Zao-Jin;Ma Qiao-Sheng;Hu Lin-Lin;Jiang Yi;Hu Peng;Chen Hong-Bin;Institute of Applied Electronics, China Academy of Engineering Physics;
  • 关键词:G波段 ; 扩展互作用速调管 ; 注波互作用 ; 电子负载
  • 英文关键词:G-band;;extended interaction klystron;;beam-wave interaction;;beam loading
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:中国工程物理研究院应用电子学研究所;
  • 出版日期:2019-08-08
  • 出版单位:物理学报
  • 年:2019
  • 期:v.68
  • 基金:中国科学技术部项目(批准号:2018YFC0115001)资助的课题~~
  • 语种:中文;
  • 页:WLXB201915020
  • 页数:18
  • CN:15
  • ISSN:11-1958/O4
  • 分类号:219-236
摘要
扩展互作用速调管是一种在毫米波、亚毫米波频段具有广泛应用前景的电真空器件.本文基于运动学理论、感应电流定理和电荷守恒定律,推导一间隙到五间隙谐振腔的电子负载电导和电子负载电纳的表达式,分析了谐振腔间隙宽度、间隙数和间隙周期等参数对电子注与微波之间能量交换的影响和谐振腔谐振频率的影响.根据理论分析结果,采用三维电磁仿真软件设计了一款工作于G波段的扩展互作用速调管,仿真结果显示,当电子注电压为24 kV、电流为0.15 A、输入功率为200 mW、轴向引导磁感应强度为0.8 T时,在中心频率217.94 GHz处,输出功率为225.5 W,电子效率为6.26%,增益为30.5 dB, 3 dB带宽约为470 MHz.
        Extended interaction klystron is a very important millimeter-wave and sub-millimeter-wave vacuum electron device with many actual and potential applications, such as space-borne cloud profiling radar,communication, imaging system, precision guided missiles, etc. Kinematical theory and space charge wave theory are extensively used to analyze the bunching process of electrons. Kinematical theory is precise when electron beam is especially small because the influence of space charge effect is ignored, while space charge wave theory is accurate when the modulation of electron beam is small since it is based on the premise of small amplitude. Based on kinematical theory, law of induce current, principle of charge conservation in a onedimensioanl mode and small signal condition, the influence of electron beam on standing wave electric field in multiple-gap cavity is analyzed, and the expression of beam-loading conductance and beam-loading susceptance in multiple-gap cavity are derived. The influence of the direct current transmit angle of single gap, the number of multiple gaps and the direct current transmit angle of between center of adjacent gaps on beam-loading conductance and beam-loading susceptance are analyzed. The results show that the beam-loading conductance and beam-loading susceptance of multiple-gap cavity can change to a bigger extent when the number of cavity gaps is bigger, which means that the maximum beam-wave conversion efficiency and the range of loaded frequency increase with the number of cavity gaps increasing. The results also show that the direct current transmit angle between centers of adjacent gaps is the most important parameter for the beam-wave interaction effect. Based on the above analysis, a G-band extended interaction klystron amplifier consisting of three fivegap cavities is designed by an three-dimensional PIC code. An output power of 225.5 W at 217.94 GHz with an efficiency of 6.26%, whose gain and 3 dB bandwidth are 30.5 dB and 470 MHz respectively, is obtained by simulation. This study is of great significance for the physical design and process in engineering the G-band extended interaction klystron amplifier.
引文
[1]Liu Z B,Zhao Y C,Huang H,Jin X,Lei L R 2015 Acta Phys.Sin.64 108404(in Chinese)[刘振帮,赵欲聪,黄华,金晓,雷禄容2015物理学报64 108404]
    [2]Gutiérrez J,Pascual J P,Tazón A 2018 Int.J.RF Microwave Comput.Aided Eng.28 21284
    [3]Rhoads C,Goshi D S 2018 IEEE Radar Conference Oklahoma,USA,April 23-27,2018 p0344
    [4]Liu G,Wang J X,Luo Y 2013 Acta Phys.Sin.62 078404(in Chinese)[刘国,王建勋,罗勇2013物理学报62 078404]
    [5]Chen S Y,Ruan C J,Wang Y,Zhang C Q,Zhong Y,Zhao D2015 J.Infrared Millmeter Waves 34 230(in Chinese)[陈姝媛,阮存军,王勇,张长青,钟勇,赵鼎2015红外与毫米波学报34 230]
    [6]Feng J J,Cai J,Hu Y F,Wu X P,Du Y H,Liu J K,Pan P,Li H Y 2014 IEEE Trans.Electron Dev.61 1721
    [7]Gerum W,Lippert G,Malzahn P,Schneider K 2001 IEEETrans.Electron Dev.48 72
    [8]Richard K,Andrew Z,Clark M,Mike M,Mark K,Richard T,Ai T,John R,Carter A 2013 IEEE International Vacuum Electronics Conference Paris,France,May 21-23,2013 p1
    [9]Wu Y,Xu Z,Zhou L,Li W J,Tang C X 2012 Acta Phys.Sin.61 224101(in Chinese)[吴洋,许州,周霖,李文君,唐传祥2012物理学报61 224101]
    [10]Maslennikov S P,Paramonov Y N,Serebryakova A S 2018IEEE International Vacuum Electronics Conference Monterey,USA,April 24-26,2018 p215
    [11]She J C,Huang Z Z,Huang Y F,Huang Z J,Chen J,Deng SZ,Xu N S 2017 International Vacuum Nanoelectronics Conference,Regensburg Germany,July 10-14,2017 p4
    [12]Li R J,Ruan C J,Zhang H F 2018 Phys.Plasmas 25 033107
    [13]Toreev A I,Fedorov V K,Patrusheva E V 2009 J.Commun.Technol.Electron.54 952
    [14]Dave B,Henry D,Richard D,Peter H,Mark H,Andrew K,Ross M,Albert R,Ed S,Brian S 2014 IEEE Trans.Electron Devices 61 1830
    [15]Chang Z W,Meng L,Yin Y,Wang B,Li H L,Rauf A,Ullah S,Bi L J,Peng R B 2018 IEEE Trans.Electron Dev.65 1179
    [16]Qu Z W,Zhang Z Q,Ding Y G,Wang S Z,Li Q S 2018IEEE International Vacuum Electronics Conference Monterey,USA,April 24-26,2018 p189
    [17]Albert R,Dave B,Brian S 2018 IEEE Trans.Electron Dev.52 895
    [18]Brian S,Albert R,Peter H,Mark H,Richard D,Dave B 2011Proceedings of the 41st European Microwave Conference Manchester,UK,Oct 10-13,2011 p984
    [19]Hu L L,Zeng Z J,Chen H B,Ma G W,Meng F B 2018 J.Eng.2018 689
    [20]Li R J,Ruan C J 2017 IEEE International Vacuum Electronics Conference London,UK,April 24-26,2017 p1
    [21]Li S F,Duan Z Y,Wang F,Wang Z L,Xu J,Gong Y B 2014Int.Conf.Infrared,Millim.,Terahertz Waves,Tucson,USA,September 14-19,2014 p2
    [22]Zhong Y,Liu W X,Wang Y,Ruan C J,Wang S Z 2012 Int.Conf.Infrared,Millim.,Terahertz Waves Wollongong,Australia,September 23-28,2012 p1
    [23]Sheng X,Wei Y,Sun F J,Wang R H,Feng H P,Hu X B2012 Vacuum Electronics 2 19(in Chinese)[盛兴,韦莹,孙福江,王瑞海,冯海平,胡晓斌2012真空电子技术2 19]
    [24]Zeng Z J 2014 M.S.Thesis(Chengdu:University of Electronic Science and Technology of China)(in Chinese)[曾造金2014硕士学位论文(成都:电子科技大学)]
    [25]Xie J L,Zhao Y X 1966 Bunching Theory of Klystron(Beijing:Science Press)pp33-177(in Chinese)[谢家麟,赵永翔1966速调管群聚理论(北京:科学出版社)第33-177页]
    [26]Ding Y G 2008 Theory and Computer Simulation of High Power Klystron(Beijing:National Defense Industry Press)pp44-75(in Chinese)[丁耀根2008大功率速调管的理论与计算模拟(北京:国防工业出版社)第44-75页]
    [27]Zhao Y C,Li S F,Huang H,Liu Z B,Wang Z L,Dan Z Y,Li X Y,Wei Y Y,Gong Y B 2015 IEEE Trans.Plasma Sci.431862
    [28]Fan Z K,Liu Q X,Liu X S,Zhou C M,Hu H Y 1999 High Power Laser and Particle Beams 11 633(in Chinese)[范植开,刘庆想,刘锡三,周传民,胡海膺1999强激光与粒子束11633]
    [29]Lemke R W,Clark M C,Marder B M 1994 J.Appl.Phys.7510
    [30]Fan Z K,Liu Q X,Liu X S,He H,Zhou C M 1999 High Power Laser and Particle Beams 11 482(in Chinese)[范植开,刘庆想,刘锡三,何琥,周传民1999强激光与粒子束11482]
    [31]Marcum J 1946 J.Appl.Phys.17 4
    [32]Marder B M,Clark M C,Bacon L D,Hoffman J M,Lemke R W,Coleman P D 1992 IEEE Trans.Plasma Sci.20 312
    [33]Carlsten B E,Haynes W B 1996 IEEE Trans.Plasma Sci.241249
    [34]Fan Z K 1999 Ph.D.Dissertation(Beijing:China Academy of Engineering Physics)(in Chinese)[范植开1999博士学位论文(北京:中国工程物理研究院)]
    [35]Eckertova L(translated by Hang G N)1980Клиотронныеусилители(Beijing:National Defense Industry Press)pp92,93(in Chinese)[哈依柯夫著(黄高年译)1980速调管放大器(北京:国防工业出版社)第92,93页]
    [36]Zhang Z H,Shu T,Zhang J,Qi Z M,Zhu J 2012 IEEETrans.Plasma Sci.40 3121
    [37]Xu A,Zhou Q F,Yan L,Chen H B 2013 High Power Laser and Particle Beams 25 2954(in Chinese)[徐翱,周泉丰,阎磊,陈洪斌2013强激光与粒子束25 2954]
    [38]Hsu H L 2006 Ph.D.Dissertation(Davis:University of California)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700