用户名: 密码: 验证码:
嫦娥卫星数传副瓣信号的干涉测量研究与精度验证
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research on Interferometry of Data Transmission Sidelobe Signal of Chang'E Satellites and Its Accuracy Verification
  • 作者:任天鹏 ; 谢剑锋 ; 路伟涛 ; 陈略 ; 韩松涛
  • 英文作者:REN Tianpeng;XIE Jianfeng;LU Weitao;CHEN Lue;HAN Songtao;Beijing Aerospace Control Center;Science and Technology on Aerospace Flight Dynamics Laboratory;
  • 关键词:干涉测量 ; 数传干涉时延 ; DOR干涉时延 ; 随机误差 ; 系统性误差 ; 波动误差
  • 英文关键词:interferometry;;data interferometric delay;;DOR interferometric delay;;random error;;systematic error;;fluctuating error
  • 中文刊名:ZRHT
  • 英文刊名:Manned Spaceflight
  • 机构:北京航天飞行控制中心;航天飞行动力学技术重点实验室;
  • 出版日期:2019-01-23 16:12
  • 出版单位:载人航天
  • 年:2019
  • 期:v.25;No.87
  • 基金:国家自然科学基金(41604030)
  • 语种:中文;
  • 页:ZRHT201901003
  • 页数:6
  • CN:01
  • ISSN:11-5008/V
  • 分类号:23-28
摘要
针对深空差分干涉测量(DOR)信号受数传副瓣信号干扰问题,首次研究了数传副瓣信号(泄露频谱)的干涉测量,建立了数传副瓣信号干涉测量优化模型,并利用嫦娥三号着陆器实测数据验证比对了数传干涉时延与DOR干涉时延。实验结果表明,干涉带宽相仿条件下,数传信号干涉时延随机误差约0. 02 ns(STD),优于DOR干涉时延0. 17 ns(STD)的随机误差;利用射电源差分观测后,DOR干涉时延与数传干涉时延基本吻合;以干涉相时延为基准,数传干涉时延的波动误差约为0. 14 ns(STD),稳定性优于波动误差约为0. 46 ns(STD)的DOR干涉时延。该结论对嫦娥五号、载人登月等任务中下行数传信号阶段提高干涉测量精度、火星探测任务中DOR信号与数传信号分时工作模式下增加干涉测量覆盖弧段具有直接的工程价值。
        Interferometry of data transmission sidelobe signal was proposed to avoid a polluted differential one-way range( DOR) interferometric delay. Optimizations of effective bandwidth and interferometric bandwidth for data transmission sidelobe signal were provided. Interferometry experiments based on Chang'e-3 Lander data were conducted to verify the precision of data interferometric delay.The results showed that the random error of data interferometric delay was about 0.02 ns( STD),which was better than 0.17 ns( STD) of DOR interferometric delay. Systematic errors of DOR interferometric delay and data interferometric delay were almost consistent with each other. The fluctuating error of data interferometric delay was about 0.14 ns( STD),which was more stable than 0.46 ns( STD) of DOR interferometric delay. Therefore,data interferometric delay can be employed in the future deep space exploration missions to improve the precision of downlink data transmission signal and increase the interferometry covering arc.
引文
[1]唐歌实.深空测控无线电测量技术[M].北京:国防工业出版社,2012:6-8,56-57.Tang G S. Radiometric Measuring Techniques for Deep SpaceNavigation[M]. Beijing:National Defense Industry press,2012:6-8,56-57.(in Chinese)
    [2] Thompson A R,Moran J M,Swensonj G W. Interferometryand Synthesisin Radio Astronomy[M]. New Jersey:John Wi-ley&Sons,2008:86-96.
    [3]刘庆会,吴亚军.高精度VLBI技术在深空探测中的应用[J].深空探测学报,2015(3):208-212.Liu Q H,Wu Y J. Application of high precision VLBI tech-nology in deep space exploration[J]. Journal of Deep SpaceExploration,2015(3):208-212.(in Chinese)
    [4] Fomalont E. The processing of VLBA spacecraft data[C]//NRAO Memorandum,Charlottesville,Virginia,January 3,2005.
    [5]吴伟仁,李海涛,董光亮,等.嫦娥二号工程X频段测控技术[J].中国科学:技术科学,2013,43:20-27.Wu W R,Li H T,Dong G L,et al. X-band measurement andcontrol technology of Chang'E-2 project[J]. SCIENTIA SINI-CA Technologica,2013,43:20-27.(in Chinese)
    [6]钱志涵,李金岭.甚长基线干涉测量技术在深空探测中的应用[M].北京:中国科学技术出版社,2012:111-116.Qian Z H,Li J L. Application of VLBI in Deep Space Explo-ration[M]. Beijing:Science and technology of China press,2012:111-116.(in Chinese)
    [7] Takahashi F,Kondo T,Takahashi Y,et al. Very Long Base-line Interferometer[M]. Ohmsha Ltd. and IOS Press,Tokyo,2000:96-100.
    [8]任天鹏,唐歌实,刘景勇,等.基于CEI的高精度相位干涉测量实验[J].遥测遥控,2015,36(6):8-12.Ren T P,Tang G S,Liu J Y,et al. CEI-based high-precisionphase interferometry tests[J]. Journal of Telemetry,Trackingand Command,2015,36(6):8-12.(in Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700