用户名: 密码: 验证码:
Ti-6Al-4V在搅拌摩擦增材中晶粒生长的数值模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical simulation of grain growth in friction stir additive manufacturing of Ti-6Al-4V alloy
  • 作者:张昭 ; 谭治军
  • 英文作者:ZHANG Zhao;TAN Zhi-jun;State Key Laboratory of Structural Analysis for Industrial Equipment,Department of Engineering Mechanics,Dalian University of Technology;International Research Center for Computational Mechanics,Dalian University of Technology;
  • 关键词:搅拌摩擦增材制造 ; 钛合金 ; 晶粒生长 ; 相变
  • 英文关键词:friction stir additive manufacturing;;titanium alloy;;grain growth;;phase transformation;;fully coupled thermo-mechanical model
  • 中文刊名:COLO
  • 英文刊名:World Nonferrous Metals
  • 机构:大连理工大学工程力学系工业装备结构分析国家重点实验室;大连理工大学国际计算力学研究中心;
  • 出版日期:2018-05-24 10:01
  • 出版单位:世界有色金属
  • 年:2018
  • 期:No.498
  • 语种:中文;
  • 页:COLO201806006
  • 页数:4
  • CN:06
  • ISSN:11-2472/TF
  • 分类号:27-30
摘要
搅拌摩擦增材制造(FSAM)是近几年新兴的一种制造方法,优点在于工件生产后的较好的力学性能。搅拌摩擦增材制造按照增材方向和焊缝位置不同分为纵向增材和横向增材。本文基于Abaqus生死单元法和移动热源法建立两种搅拌摩擦增材制造有限元模型,研究两种不同方式增材的温度分布。利用蒙特卡洛法研究钛合金在搅拌摩擦增材制造中微观结构演变。研究表明,搅拌区晶粒在降温及后续增材层累加的时候进行粗化,并在一定温度区间内进行由β相到α相的转变。α相由β相边界析出并以针状晶的形式向β相晶粒内部生长,研究结果与文献中晶粒分布规律相符,验证了模型用于Ti-6Al-4V搅拌摩擦增材制造中微观结构演变的可行性。
        Friction stir additive manufacturing(FSAM) is an emerging manufacturing method in recent years. The advantage lies in the better mechanical properties of the workpiece after its production. The friction stir additive manufacturing is divided into longitudinal and lateral additive manufacturing according to the direction of the addi-tive layers and the position of the weld line. Based on the Abaqus live-dead element method and the mobile heat source method,this paper establishes two finite element models for FSAM and studies the temperature distribution of FSAM in two different ways. Study on microstructure evolution of Titanium alloy during FSAM process is utilized Monte Carlo(MC) method. Studies have shown that the grains in the Stir Zone(SZ) are coarsened during manu-facturing process,and the transformation from β phase to α phase occurs within a certain temperature range. α phase grains precipitate from the boundary of β phase grains and grow in the form of acicular crystals to the inside of β grains. The results are consistent with the grain distribution law in the reference,verifying the feasibility that the model is used in the structural evolution prediction of Ti-6Al-4V FSAM.
引文
[1]Thomas W M,Nicholas E D,Needham J C,et al.Friction stir butt welding:UK,9125978.8[P].1991-12-6.
    [2]Park S H C,Sato Y S,Kokawa H.Effect of micro-texture on fracture location in friction stir weld of Mg alloy AZ61 during tensile test[J].Scripta Materialia,2003,49(2):161-166.
    [3]Sato Y S,Nelson T W,Sterling C J.Recrystallization in type304L stainless steel during friction stirring[J].Acta Materialia,2005,53(3):637-645.
    [4]Leyens C,Peters M.Titanium and Titanium Alloys[M].Cologne:Wiley–VCH,2003:1-2.
    [5]张昭,吴奇,张洪武.转速对搅拌摩擦焊接搅拌区晶粒影响研究[J].材料工程,2015,43(7):1-7.
    [6]张昭,吴奇.搅拌针对搅拌摩擦焊接搅拌区晶粒影响研究[J].兵器材料科学与工程,2014,37(5):32-35.
    [7]曾光,韩志宇,梁书锦,等.金属零件3D打印技术的应用研究[J].中国材料进展,2014(06):376-382.
    [8]Keicher D M,Smugeresky J E,Romero J A,et al.Using the laser engineered net shaping(LENS)process to produce complex components from a CAD solid model[C]//Lasers as Tools for Manufacturing II.Lasers as Tools for Manufacturing II,1997:91-97.
    [9]Zhang Z,Wu Q,Grujicic M,et al.Monte Carlo simulation of grain growth and welding zones in friction stir welding of AA6082-T6[J]Journal of Materials Science,2016,51:1882–1895.
    [10]张昭,吴奇,万震宇,等.基于蒙特卡洛方法的搅拌摩擦焊接晶粒生长模拟[J].塑性工程学报,2015,22(4):172-177.
    [11]鄢东洋,史清宇,吴爱萍.铝合金薄板搅拌摩擦焊接残余变形的数值分析[J].金属学报,2009,45(2):183-188.
    [12]Gao J,Thompson R G.Real time-temperature models for Monte Carlo simulations of normal grain growth[J].Acta Materialia,1996,44(11):4565-4570.
    [13]Katzarov I,Malinov S,Sha W.Finite element modeling of the morphology ofβtoαphase transformation in Ti-6Al-4V alloy[J].Metallurgical and Materials Transactions A,2002,33(4):1027-1040.
    [14]Song K J,Wei Y H,Dong Z B,et al.Numerical simulation ofβtoαphase transformation in heat affected zone during welding of TA15 alloy[J].Computational Materials Science,2013,72:93-100.
    [15]张昭,葛芃,谭治军,等.激光增材制造微观结构模拟与力学性能预测[J].兵器材料科学与工程,2018,1:002.
    [16]张昭,谭治军.搅拌摩擦焊接Ti-6Al-4V钛合金晶粒生长的数值模拟[J].兵器材料科学与工程,2017,40(3):7-11.
    [17]Kitamura K,Fujii H,Iwata Y,et al.Flexible control of the microstructure and mechanical properties of friction stir welded Ti–6Al–4V joints[J].Materials&Design,2013,46:348-354.
    [18]Palanivel S,Nelaturu P,Glass B,et al.Friction stir additive manufacturing for high structural performance through microstructural control in an Mg based WE43 alloy[J].Materials&Design(1980-2015),2015,65:934-952.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700