用户名: 密码: 验证码:
毛细管泡沫排液采气工艺在低压、小液量水平井中的推广应用——以川西坳陷中浅层气藏为例
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Popularization and application of capillary foam deliquification technology in horizontal wells with low pressures and low liquid production rates: A case study on middle–shallow gas reservoirs in the Western Sichuan Depression
  • 作者:刘通 ; 周兴付 ; 陈海龙 ; 鲁光亮 ; 赵哲军 ; 刘大永 ; 杜洋
  • 英文作者:Liu Tong;Zhou Xingfu;Chen Hailong;Lu Guangliang;Zhao Zhejun;Liu Dayong;Du Yang;Petroleum Engineering Technology Institute,Sinopec Southwest Oil & Gas Branch;No.1 Gas Production Plant,Sinopec Southwest Oil & Gas Branch;
  • 关键词:水平井 ; 毛细管 ; 排液采气 ; 井底净化 ; 测压 ; 防卡 ; 悬挂 ; 四川盆地 ; 川西气田
  • 英文关键词:Horizontal well;;Capillary;;Deliquification;;Bottom-hole cleaning;;Pressure measurement;;Sticking prevention;;Suspension;;Sichuan Basin;;Western Sichuan Gas Field
  • 中文刊名:TRQG
  • 英文刊名:Natural Gas Industry
  • 机构:中国石化西南油气分公司石油工程技术研究院;中国石化西南油气分公司采气一厂;
  • 出版日期:2018-06-25
  • 出版单位:天然气工业
  • 年:2018
  • 期:v.38;No.296
  • 基金:国家科技重大专项“高含硫气藏安全高效开发技术”(编号:2016ZX05017)、“低丰度致密低渗油气藏开发关键技术”(编号:2016ZX05048)
  • 语种:中文;
  • 页:TRQG201806018
  • 页数:8
  • CN:06
  • ISSN:51-1179/TE
  • 分类号:89-96
摘要
为了解决起泡剂加注不到位导致水平井泡沫排液采气工艺应用效果变差的难题,在对四川盆地川西气田气井产气量、产液量和井身结构等3个方面进行毛细管泡沫排液采气工艺适应性分析的基础上,同时开展注剂点深度设计、毛细管规格选择、工具串参数(最大长度和最小配重)及泡排参数(起泡剂选型、地面加注浓度和地面加注量)选择等方面的优化研究,制订了毛细管标准化作业流程,并开展了现场应用试验。结果表明:(1)毛细管泡沫排液采气工艺在中浅层、低压、小液量水平井中具有推广潜力,但产气量过低、产液量过高或含凝析油过多的井不宜采用该工艺;(2)泡排工艺注剂点深度井斜角介于70°~80°,毛细管规格的选择应满足井深对抗拉强度的要求,泡排参数需针对具体井况与积液特征进行优化,毛细管施工作业应遵照标准化流程;(3)截至2017年7月底,中石化川西气田有9口水平井开展毛细管泡沫排液采气工艺试验获得了成功,累计增产天然气295×104 m3;(4)形成了毛细管防卡、注剂测压一体化、净化排液联作、毛细管井口悬挂等4项毛细管泡沫排液采气配套技术。结论认为,毛细管泡沫排液采气工艺系列技术为川西坳陷中浅层气藏、低压、小液量水平井的排液稳产提供了技术支撑,可为同类型气藏的水平井实施排液采气工艺提供技术借鉴。
        The application effect of foam deliquification technology in horizontal wells is poor because the foaming agent fails to reach the target location. In view of this, the adaptability of capillary foam deliquification technology in the Western Sichuan Gas Field in the Sichuan Basin was analyzed from the aspects of gas production rate, liquid production rate and casing program of gas wells, and the design of injection depth and the selection of capillary size, tool string parameters(maximum length and minimum counterweight) and foam deliquification parameters(foaming agent type selection, ground injection concentration and rate) were optimized. Then, a standardized capillary operation process was developed. Finally, a field application test was carried out. And the following research results were obtained. First, the capillary foam deliquification technology has a popularization potential in the horizontal wells of middle–shallow depth, low pressure and low liquid production rate, but it is not suitable for the wells with too low gas production rate, too high liquid production rate or too high condensate content. Second, the well deviation angle at the injection depth shall be between 70° – 80°, the selection of capillary size shall satisfy the requirement for tension strength by the well depth, the foam deliquification parameters shall be optimized based on the specific well conditions and the liquid loading characteristics, and the capillary operation shall comply with the standardized process. Third, by the end of July 2017, the capillary foam deliquification technology had been successfully applied in 9 horizontal wells in the Western Sichuan Gas Field with a cumulative gas increment of 295×10~4 m~3. Fourth, 4 supporting technologies of capillary foam deliquification are formed, including capillary sticking prevention, integrated agent injection and pressure measurement, combined cleaning and drainage and capillary wellhead suspension. In conclusion, the capillary foam deliquification technology provides a technological support for the deliquification and production stabilization of middle–shallow depth, low pressure and low liquid production rate horizontal wells in the Western Sichuan Depression, and also provides technological reference for the deliquification of horizontal wells in the same type of gas reservoirs.
引文
[1]张百灵,周静.新场致密砂岩气藏泡沫排水采气技术应用优化[J].天然气工业,2003,23(3):126-128.Zhang Bailing&Zhou Jing.Application and optimization of foam drainage in the tight sandstone gas reservoir of Xinchang[J].Natural Gas Industry,2003,23(3):126-128.
    [2]甘振维.理论创新和技术进步支撑引领百亿气田建设[J].天然气工业,2016,36(12):1-9.Gan Zhenwei.Theoretical innovation and technical progress will usher in a production period of gas fields with an annual capacity of ten billion cubic meters[J].Natural Gas Industry,2016,36(12):1-9.
    [3]刘亚青,杨泽超,周兴付,林代洪,董耀文.毛细管排水采气技术在四川某气田水平井中的应用[J].钻采工艺,2013,36(5):119-121.Liu Yaqing,Yang Zechao,Zhou Xingfu,Lin Daihong&Dong Yaowen.The application of the capillary deliquification in a horizontal gas well of Sichuan field[J].Drilling&Production Technology,2013,36(5):119-121.
    [4]武恒志,戚斌,郭新江,陈海龙,蒋晓红.致密砂岩气藏采输技术[M].北京:中国石化出版社,2015.Wu Hengzhi,Qi Bin,Guo Xinjiang,Chen Hailong&Jiang Xiaohong.Gas production and transmission technology for tight sandstone gas reservoir[M].Beijing:China Petrochemical Press,2015.
    [5]Mitchell BJ.Viscosity of foam[D].Norman:University of Oklahoma,1970.
    [6]Princen HM.Rheology of foams and highly concentrated emulsions:I.Elastic properties and yield stress of a cylindrical model system[J].Journal of Colloid and Interface Science,1983,91(1):160-175.
    [7]Kraynik AM.Foam flows[J].Annual Review of Fluid Mechanics,1988,20(1):325-357.
    [8]Hasan AR,Kabir CS&Sayarpour M.Simplified two-phase flow modeling in wellbores[J].Journal of Petroleum Science and Engineering,2010,72(1/2):42-49.
    [9]Bendiksen KH.An experimental investigation of the motion of long bubbles in inclined tubes[J].International Journal of Multiphase Flow,1984,10(4):467-483.
    [10]Lea JF,Nickens HV&Wells MR.Gas well deliquification[M].2nd ed.Amsterdam:Elsevier Inc.,2008.
    [11]王琦,李颖川,王志彬,程金金.水平气井连续携液实验研究及模型评价[J].西南石油大学学报(自然科学版),2014,36(3):139-145.Wang Qi,Li Yingchuan,Wang Zhibin&Cheng Jinjin.Experimental study and model evaluation on continuous liquid removal in horizontal gas well[J].Journal of Southwest Petroleum University(Science&Technology Edition),2014,36(3):139-145.
    [12]刘通,郭新江,王世泽,陈海龙,刘大永.水平井泡沫排液采气井筒流型实验研究[J].钻采工艺,2017,40(1):69-73.Liu Tong,Guo Xinjiang,Wang Shize,Chen Hailong&Liu Dayong.Experimental study on flow patterns in gas-producing horizontal wellbore having liquid drainage by foam[J].Drilling&Production Technology,2017,40(1):69-73.
    [13]杨涛,鲁斌昌,杨桦,方建龙,向雪琳.关于深井不同壁厚组合生产管柱优化设计的研究与应用[J].钻采工艺,2012,35(6):81-84.Yang Tao,Lu Binchang,Yang Hua,Fang Jianlong&Xiang Xuelin.Research and application of optimization design of the difference wall thickness production string in ultra-deep well[J].Drilling&Production Technology,2012,35(6):81-84.
    [14]SY/T 6030—2012.钻杆及油管输送测井作业技术规范[S].北京:石油工业出版社,2012.SY/T 6030-2012.Technical specification for logging operation of drill pipe&pipe conveyed[S].Beijing:Petroleum Industry Press,2012.
    [15]郭晓萌,爨莹,吴新民.关井工况小直径管下井过程加重杆长度计算方法研究[J].重庆文理学院学报(自然科学版),2009,28(5):25-27.Guo Xiaomeng,Cuan Ying&Wu Xinmin.Research on the length calculation method of heavy rods of small-diameter pipe during down-hole process in case of well shut-in conditions[J].Journal of Chongqing University of Arts and Sciences(Natural Science Edition),2009,28(5):25-27.
    [16]李士伦.天然气工程[M].2版.北京:石油工业出版社,2008.Li Shilun.Natural gas engineering[M].2nd ed.Beijing:Petroleum Industry Press,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700