用户名: 密码: 验证码:
氡气测量在川藏铁路板块结合带构造活动研究中的应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:MICRO-DOSE RADON MEASUREMENT FOR NEO-TECTONIC ACTIVITY AT PLATE COLLISION ZONES ALONG SICHUAN-TIBET RAILWAY
  • 作者:黄超 ; 李渝生 ; 刘凯 ; 易树健
  • 英文作者:HUANG Chao;LI Yusheng;LIU Kai;YI Shujian;State Key Laboratory of Geohazard Prevention and Geoenvironment Protection,Chengdu University of Technology;
  • 关键词:氡气测量 ; 川藏铁路 ; 板块结合带 ; 构造活动
  • 英文关键词:Radon measurement;;Sichuan-Tibet railway;;Plate combination zone;;Tectonic activity
  • 中文刊名:GCDZ
  • 英文刊名:Journal of Engineering Geology
  • 机构:地质灾害防治与地质环境保护国家重点实验室(成都理工大学);
  • 出版日期:2018-08-15
  • 出版单位:工程地质学报
  • 年:2018
  • 期:v.26;No.126
  • 基金:中国铁路总公司科技研究开发计划重大课题——川藏铁路修建关键技术研究(2014G004)资助
  • 语种:中文;
  • 页:GCDZ201804023
  • 页数:10
  • CN:04
  • ISSN:11-3249/P
  • 分类号:204-213
摘要
川藏铁路高速交通廊道研究区地质构造环境较为脆弱,尤其是金沙江结合带、澜沧江结合带、怒江结合带、嘉黎断裂带及雅鲁藏布江结合带5条主要板块碰撞结合带,均表现出不同程度的构造活动,其构造活动严重制约着川藏铁路的建设。本文在深入研究其地质建造特征、地震、深部结构及活动特征等基础上,运用微剂量氡气测量的方法表征结合带的地球化学特征,采用不同于常规统计学方法获取背景值,并通过定义异常系数(峰值mmax/背景值m0)探讨其与结合带地质建造、深部特征、地震及构造活动的关系。研究结果表明:每条测氡曲线均存在一个5 min,10 min,15 min 3次测氡数据相差极小"特殊点",氡气背景值与地壳岩石建造有显著关系;峰值与结合带所处大地构造位置有关;氡气异常系数整体沿西南至东北方向依次降低,氡气异常系数与断裂带构造活动关系极为显著,其中异常系数与水平位移速度,滑动速率及地应力均具有良好的正相关关系,回归方程分别为:y=0.869x+0.1278、y=0.7318x+15.1052、y=4.2196x+7.5263 9,研究结果对川藏铁路板块结合带的构造活动研究及川藏铁路的建设具有重大意义。
        The geological structure environment of the Sichuan-Tibet railway study area is relatively fragile. There are especially 5 main plate collision zones including Jinshajiang combination zone,Lancangjiang combination zone,Nujiang combination zone,Jiali faults and Yarlung Zangbo River combination zone. They show different tectonic activities. Theirs tectonic activity seriously restricts the construction of Sichuan-Tibet railway. Based on the deep study of geologic characteristics,seismic,deep structure and activity characteristics,this paper uses the method of micro-dose radon measurement to characterize the geochemical characteristics of the collision zone,and obtains the background value through the conventional statistical method. We define the anomalous coefficient( peak value mmax/background value m0). We then study the relationship between the coefficient and other factors including geological structure,deep features,earthquake and tectonic activity. The results show that there is a "specialpoint"in each profile of radon measurement. The difference among 5 min,10 min and 15 min radon measurement data is very small. The radon background value is significantly related to the crustal rock construction. The peak value is related to the geotectonic position of the collision zone. The anomalous coefficient of radon decreases from southwest to northeast,which is remarkably related to tectonic activity. The anomalous coefficient has a positive correlation with horizontal displacement velocity,sliding velocity and ground stress. The results are as follows: y =0. 869 x+0. 1278,y = 0. 7318 x + 15. 1052,y = 4. 2196 x + 7. 52639. The research results have a great significance to the study of tectonic activity of Sichuan-Tibet railway plate collision zone and the construction of Sichuan-Tibet railway.
引文
Gao D D,Wu Y,Chen M.2014.Abnormality of Rn in active fault caused by Wenchuan Earthquake and its hydrogeological meaning[J].Journal of China Hydrology,34(4):44-49.
    Gu Y,Ge L Q,Wang G X,et al.2009.Analysis and evaluation of faults activities in Chengdu region with radon concentration measurements after Wenchuan earthquake[J].Journal of Engineering Geology,17(3):296-300.
    Jin S.2009.The characteristics of crust-mantle electrical structure and dynamics within Tibetan Plateau[D].Beijing:China University of Geosciences.
    Li C M,Yang Z J,Zhu P Y,et al.2012.Research on observatory result of water radon recorded by KJD-2000R emanometer[J].Journal of Seismological Research,35(3):399-405.
    Li Y S,Huang C,Jiang L W,et al.2016.The crustal tectonic dynamic effects of Jindhsajiang combination zone of Sichuan-Tibet railway[J].Journal of Railway Engineering Society,33(11):1-5.
    Li Y S,Yi S J,Jiang L W,et al.2016.Research on the stress deformation and engineering effect of the Lancangjiang fault in Sichuan-Tibet railway[J].Journal of Railway Engineering Society,33(5):6-10.
    Liu X H,Ju Y T,Wei L J,et al.2009.Further discussion on the structural model of the Yarlung Zangbo Suture Zone[J].Science in China Series D:Earth Sciences,39(4):448-463.
    Liu Y P,Tang W Q,Zhao J X.2010.Modern crustal motion and GPSmonitoring in the eastern Qinghai-Tibet Plateau and adjacent areas[M].Beijing:Geological Publishing House.
    Meng G K,He K M,Ban T,et al.1997.Study on activity and segmentation of active fault using measurements of radon and mercury gases[J].Earthquake Research in China,13(1):43-51.
    Shao Y X,Yang X L,Li Y B.2007.The result and measurement of soil gas radon and soil gasmercury in the exploration of Haihe hidden fault[J].Seismology and Geology,29(3):627-636.
    Sheng C Y,Wang Q,Wu Y,et al.2002.GPS inversion of kinematic model of the main boundaries of the rhombus block in Sichuan and Yunnan[J].Chinese Journal of Geophysics,45(3):352-361.
    Song J,Tang F T,Deng Z H,et al.2013.Late quaternary movement characteristic of Jiali fault in Tibetan Plateau[J].Acta Scientiarum Naturalium Universitatis Pekinensis,49(6):973-980.
    Wang B D,Wang L Q,Xu J F,et al.2015.The discovery of highpressure granulite at Shelama in Dongco area along the Bangong CoNujiang River suture zone and its tectonic significance[J].Geological Bulletin of China,34(9):1605-1616.
    Wang X Z,Qiang B Z X,Peng X J.2008.A discussion about the geological nature of Lancangjiang Fault Zone in east Xizang-West Yunnan[J].Yunnan Geology,27(3):362-370.
    Wang Y S,Xu H B,Wei P,et al.2015.Geochemical features of Longmenshan fractures after Wenchuan earthquake[J].Journal of Engineering Geology,23(S1):24-30.
    Wang Y S.2002.Application of radon measurement to the study of regional tectonic stability[J].Journal of Mountain Science,20(4):505-508.
    Xu Z Q,Hou L W,Wang Z X,et al.1992.Mountain building processes of the Songpan-Ganzi Orogeny,China[M].Beijing:Geological Publishing House:53-59.
    Zhang J,Li X J,Zou Y Q,et al.2001.Analysis and evaluation of radon survey result in relation with fault activity in northern Qinling belt[J].Journal of Engineering Geology,9(1):81-86.
    Zhang X,Wang Y S.2017.Activities of Xiaojaing fault zone in Baihetan hydropower station reservoir[J].Journal of Engineering Geology,25(2):531-540.
    Zhou R J,Chen G X,Li Y,et al.2005.Research on active faults in Litang-Batang region,western Sichuan province and the seismogenic structures of the 1989 Batang M6.7 earthquake swarm[J].Seismology and Geology,27(1):31-43.
    高东东,吴勇,陈盟.2014.汶川地震小鱼洞活动断裂氡气异常及其水文地质意义[J].水文,34(4):44-49.
    谷懿,葛良全,王广西,等.2009.汶川地震震后大成都地区断裂带活动性氡气测量分析评价[J].工程地质学报,17(3):296-300.
    金胜.2009.青藏高原的壳幔电性结构特征及其动力学意义[D].北京:中国地质大学.
    李朝明,杨志坚,朱培耀,等.2012.KJD-2000R测氡仪(α谱仪)观测结果分析[J].地震研究,35(3):399-405.
    李渝生,黄超,蒋良文,等.2016a.川藏铁路金沙江结合带地壳构造动力学效应[J].铁道工程学报,33(11):1-5.
    李渝生,易树健,蒋良文,等.2016b.川藏铁路澜沧江断裂应力形变及工程效应研究[J].铁道工程学报,33(5):6-10.
    刘小汉,琚宜太,韦利杰,等.2009.再论雅鲁藏布江缝合带构造模型[J].中国科学D辑:地球科学,39(4):448-463.
    刘宇平,唐文清,赵济湘.2010.青藏高原东部及邻区现代地壳运动GPS监测[M].北京:地质出版社.
    孟广魁,何开明,班铁,等.1997.氡、汞测量用于断裂活动性和分段的研究[J].中国地震,13(1):43-51.
    邵永新,杨绪连,李一兵.2007.海河隐伏活断层探测中土壤气氡和气汞测量及其结果[J].地震地质,29(3):627-636.
    申重阳,王琪,吴云,等.2002.川滇菱形块体主要边界运动模型的GPS数据反演分析[J].地球物理学报,45(3):352-361.
    宋健,唐方头,邓志辉,等.2013.青藏高原嘉黎断裂晚第四纪运动特征[J].北京大学学报(自然科学版),49(6):973-980.
    王保弟,王立全,许继峰,等.2015.班公湖-怒江结合带洞错地区舍拉玛高压麻粒岩的发现及其地质意义[J].地质通报,34(9):1605-1616.
    王新忠,强巴扎西,彭兴阶.2008.藏东滇西澜沧江断裂带地质属性讨论[J].云南地质,27(3):362-370.
    王运生,徐鸿彪,魏鹏,等.2015.龙门山断裂带震后地球化学特征[J].工程地质学报,23(增1):24-30.
    王运生.2002.测氡在区域构造稳定性研究中的应用---以滇西北北部区域构造稳定性研究为例[J].山地学报,20(4):505-508.
    许志琴,侯立玮,王综秀,等.1992.中国松潘-甘孜造山带的造山过程[M].北京:地质出版社:53-59.
    张骏,李西建,邹艳琴,等.2001.北秦岭地带断裂活动性氡气测试成果分析评价[J].工程地质学报,9(1):81-86.
    张欣,王运生.2017.白鹤滩水电站库区小江断裂带活动性研究[J].工程地质学报,25(2):531-540.
    周荣军,陈国星,李勇,等.2005.四川西部理塘-巴塘地区的活动断裂1989年巴塘6.7级震群发震构造研究[J].地震地质,27(1):31-43.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700