用户名: 密码: 验证码:
气力推进艇航迹跟踪控制建模及仿真分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Modeling and Simulation Analysis of Trajectory Tracking Control of Airboat
  • 作者:詹长书 ; 李宏刚 ; 李洪亮 ; 储江伟
  • 英文作者:ZHAN Changshu;LI Honggang;LI Hongliang;CHU Jiangwei;Traffic and Transportation College, Northeast Forestry University;
  • 关键词:气力推进艇 ; 航迹跟踪 ; 动力学建模 ; 仿真分析
  • 英文关键词:airboat;;trajectory tracking;;dynamic modeling;;simulation analysis
  • 中文刊名:CANB
  • 英文刊名:Ship Engineering
  • 机构:东北林业大学交通学院;
  • 出版日期:2019-03-25
  • 出版单位:船舶工程
  • 年:2019
  • 期:v.41;No.265
  • 基金:国家林业局948项目(2015-4-33)
  • 语种:中文;
  • 页:CANB201903020
  • 页数:5
  • CN:03
  • ISSN:31-1281/U
  • 分类号:90-94
摘要
在对气力推进艇的运行阻力进行分析的基础上,给出气力推进艇在惯性坐标系x Oy中的受力状态,并建立航迹跟踪的动力学和运动学控制模型。基于控制模型建立应用PID控制器的Simulink仿真模型;结合研究对象的特征选择相应的仿真参数,在多次调试优化的基础上确定PID控制器的设计参数,并对圆形封闭轨迹、直线轨迹和阶跃轨迹的航迹跟踪效果进行仿真分析。结果表明:对于圆形封闭轨迹跟踪,在初始的1/4周期内跟踪误差较大,此后的持续跟踪效果良好;对于直线开放型轨迹跟踪,跟踪误差较小,可控制在1 m以内;对于阶跃轨迹跟踪,过渡过程响应时间为10 s,稳态误差为1 m。
        Based on the analysis of the operational resistance of the airboat, its force analysis is given in the inertial coordinate x Oy, and dynamic and kinematic control models of airboat are made. Based on the control models, SIMULINK simulation model is established with PID controller. Combining the characteristics of the research object, the corresponding simulation parameters are selected, and the PID controller's parameters are determined through multiple debugging and optimization. The tracking effect of circular, line and step trajectory is simulated and analyzed. The results show that the error of tracing circular is large within initial 1/4 cycles and the following continuous tracking effect is good, the error of tracking line is small within 1 m, and tracking step's response time of transition process is 10 s and steady-state error is 1m.
引文
[1]詹长书,储江伟,田广东.空气动力艇的国内外生产与应用现状[J].森林工程,2013,29(2):103-106.
    [2]ASHRAFIUON H,MUSKE K R,MCNINCH L,et al.Sliding Model Tracking Control of Surface Vessels[J].IEEE Transactions on Industrial Electronics,2008,55(11):4004-4011.
    [3]LIU Y F,NOGUCHI N,ALI R F.Simulation and Test of an Agricultural Unmanned Airboat Maneuverability Model[J].International Journal of Agriculture and Bioengineering2017,10(1),88-96.
    [4]廖煌雷,庄佳园,李晔,等.欠驱动无人艇轨迹跟踪的滑模控制方法[J].应用科学学报,2011,29(7):428-434.
    [5]潘永平,黄道平,孙宗海.欠驱动船舶航迹Backstepping自适应模糊控制[J].控制理论与应用,2011,28(7):907-915.
    [6]万磊,董早鹏,李岳明,等.非完全对称欠驱动高速无人艇轨迹跟踪控制[J].电机与控制学报,2014,18(10):95-103.
    [7]廖煜雷,万磊.欠驱动船舶直线航迹的滑模控制方法[J].应用科技,2011,38(11):13-17.
    [8]李湘平,吴汉松,阮苗锋.基于Backstepping的欠驱动船舶神经滑模航迹控制[J].西华大学学报,2015,34(1):71-75.
    [9]邱荷珍,王磊,王洪超.船舶轨迹跟踪研究综述[J].实验室研究与探索,2014,33(4):4-9.
    [10]THIEN P Q,HIEU N K,VUONG P M,Numerical Simulation of Floating Airboat:Estimation of Hydrodynamic Forces[J].International Journal of Mechanical Engineering and Applications,2015,3(1-3):41-46.
    [11]盛振邦.船舶原理[M].上海:上海交通大学出版社,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700