用户名: 密码: 验证码:
华南地区7—10月两类区域性极端降水事件特征及环流异常对比
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Anomalous circulation patterns in association with two types of regional daily precipitation extremes over South China from July to October
  • 作者:孙婧超 ; 管兆勇 ; 李明刚 ; 于亚鑫
  • 英文作者:SUN Jingchao;GUAN Zhaoyong;LI Minggang;YU Yaxin;Key Laboratory of Ministry of Education for Meteorological Disaster/Climate and Weather Disasters Collaborative Innovation Center, Nanjing University of Information Science and Technology;State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences;School of Atmospheric Sciences, Chengdu University of Information Technology;
  • 关键词:华南地区 ; 区域性日降水极端事件 ; 环流异常 ; 热带气旋
  • 英文关键词:South China;;Regional mean daily precipitation extremes(RDPE);;Circulation pattern;;Tropical cyclones * 资助课题:公益性行业(气象)科研专项(GYHY201406024)、灾害天气国家重点实验室课题(2015LASW-A03)、江苏省优势学科建设项目(PAPAD)
  • 中文刊名:QXXB
  • 英文刊名:Acta Meteorologica Sinica
  • 机构:南京信息工程大学气象灾害教育部重点实验室/气候与气象灾害协同创新中心;中国气象科学研究院灾害天气国家重点实验室;成都信息工程大学大气科学学院;
  • 出版日期:2019-02-15
  • 出版单位:气象学报
  • 年:2019
  • 期:v.77
  • 基金:公益性行业(气象)科研专项(GYHY201406024);; 灾害天气国家重点实验室课题(2015LASW-A03);; 江苏省优势学科建设项目(PAPAD)
  • 语种:中文;
  • 页:QXXB201901004
  • 页数:15
  • CN:01
  • ISSN:11-2006/P
  • 分类号:45-59
摘要
利用1981—2016年7—10月中国753站逐日降水资料、气象信息综合分析处理系统(MICAPS)逐日站点降水资料、日本东京台风中心西北太平洋热带气旋(TC)最佳路径资料和NCEP/NCAR再分析资料集,分析了华南地区区域性日降水极端事件(RDPE事件)的统计特征及环流异常。根据华南地区RDPE事件的发生是否受热带气旋影响将其分为TCfree-RDPE和TCaff-RDPE两类事件,其中TCaff-RDPE事件占42%且集中发生在8月4—5候;TCfree-RDPE事件以7月发生频数最多,占其总频次的1/2以上。TCfree-RDPE事件发生时,华南地区受异常气旋性环流控制,来自西太平洋和中国南海的暖湿气流与北方冷气团在此汇合并形成一条狭长的水汽辐合带,低层辐合、高层辐散,显著强烈的上升运动为TCfree-RDPE事件的发生与维持提供了有利条件;与此同时,波扰动能量由高原东北侧及河西走廊地区向华南一带传播并在华南显著辐合,有利于华南上空扰动的发展和维持。TCaff-RDPE事件发生时,华南上空由低层到高层的斜压环流结构更为明显,异常上升运动更加强烈,热带气旋在其运动过程中携带了大量源自孟加拉湾、中国南海和西太平洋地区的水汽并输送至华南地区,水汽辐合气流更为强盛。同时,波扰动能量由高纬度地区沿河西走廊向下游传播,但在华南地区辐合不甚明显。两类极端事件发生时,加热场上的差异亦明显。华南及邻近地区上空的大气净加热及其南侧大范围区域的净冷却所形成的加热场梯度对TCfree-RDPE事件的发生有利。而TCaff-RDPE事件发生时,〈Q_1〉和〈Q_2〉在经向上由18°N以南、华南及其邻近地区、32°N以北呈负—正—负的异常分布型,正距平值更高,加热场梯度更大,有利于TCaff-RDPE事件的维持。这些结果有利于人们认识和预测华南区域性日降水极端事件的发生。
        Using daily precipitation data collected at 753 stations in China and from the Meteorological Information Comprehensive Analysis and Process System(MICAPS), the Southwest Pacific Ocean Tropical Cyclone(TC) optimal path data from the Tokyo Typhoon Center in Japan, and the National Centers for Environmental Prediction/National Center for Atmospheric Research(NCEP/NCAR) reanalysis, the statistical characteristics of regional mean daily precipitation extreme(RDPE) events and circulation anomalies in South China were studied. Depending on whether the occurrence of a given RDPE event is affected by TC, the RDPEs are classified into two categories, i.e., TCfree-RDPE and TCaff-RDPE events. The TCaff-RDPE events account for about 42% of the total RDPEs and mainly occur in late August, while the TCfree-RDPE events frequently occur in July. When TCfree-RDPE events occur, South China is controlled by abnormal cyclonic circulations, and the warm and moist airflow from the western Pacific region and the South China Sea merge with the cold air from the north in this region, inducing a long narrow zone of water vapor convergence and significant and strong ascending motion, which are responsible for the occurrence and maintenance of TCfree-RDPE events. Simultaneously, the wave energy propagates from the northeastern side of the Tibetan Plateau and the Hexi Corridor region to South China and converges in this area, which favors the development and maintenance of perturbation over South China. When TCaff-RDPE events occur, the southern part of China is dominated by TC-related strong anomalous cyclonic circulations. The warm, moist air mass is transported into this area from the Bay of Bengal, the western Pacific and the South China Sea, leading to large amounts of latent heat release and strong ascending motion over South China. These results are helpful for better understanding and predicting the occurrence of regional extreme precipitation events in South China.
引文
鲍名. 2007. 近50年我国持续性暴雨的统计分析及其大尺度环流背景. 大气科学, 31(5): 779-792. Bao M. 2007. The statistical analysis of the persistent heavy rain in the last 50 years over China and their backgrounds on the large scale circulation. Chinese J Atmos Sci, 31(5): 779-792 (in Chinese)
    鲍名. 2008. 两次华南持续性暴雨过程中热带西太平洋对流异常作用的比较. 热带气象学报, 24(1): 27-36. Bao M. 2008. Comparison of the effects of anomalous convective activities in the tropical Western Pacific on two persistent heavy rain events in South China. J Trop Meteor, 24(1): 27-36 (in Chinese)
    陈丹萍, 管兆勇, 侯俊等. 2016. 2007年夏季江淮强降水过程中10~30 d低频变化及其与对流层上层波包活动的联系. 大气科学学报, 39(2): 177-188. Chen D P, Guan Z Y, Hou J, et al. 2016. The 10-30-day intraseasonal oscillations of circulations and their associations with Rossby wave packets in the upper troposphere during persistent severe rainfall in summer 2007. Trans Atmos Sci, 39(2): 177-188 (in Chinese)
    陈际龙, 黄荣辉. 2008. 亚洲夏季风水汽输送的年际年代际变化与中国旱涝的关系. 地球物理学报, 51(2): 352-359. Chen J L, Huang R H. 2008. Interannual and interdecadal variations of moisture transport by Asian summer monsoon and their association with droughts or floods in China. Chinese J Geophys, 51(2): 352-359 (in Chinese)
    陈锦年, 张淮. 1987. 南海海-气热量交换对大气环流及华南前汛期降水影响的分析. 海洋湖沼通报, (3): 30-33. Chen J N, Zhang H. 1987. A preliminary study on the influence of Sea-Air heat exchange in the South China Sea on the atmospheric circulation and the precipitation of Huanan in earlier flood season. Trans Oceanol Limnol, (3): 30-33 (in Chinese)
    陈烈庭. 1977. 东太平洋赤道地区海水温度异常对热带大气环流及我国汛期降水的影响. 大气科学, 1(1): 1-12. Chen L T. 1977. The effects of the anomalous sea-surface temperature of the equatorial Eastern Pacific ocean on the tropical circulation and rainfall during the rainy period in China. Chinese J Atmos Sci, 1(1): 1-12 (in Chinese)
    陈文. 2002. El Nio和La Nia事件对东亚冬、夏季风循环的影响. 大气科学, 26(5): 595-610. Chen W. 2002. Impacts of El Nio and La Nia on the cycle of the East Asian winter and summer monsoon. Chinese J Atmos Sci, 26(5): 595-610 (in Chinese)
    陈艺敏, 钱永甫. 2005. 西太平洋暖池海温对华南前汛期降水影响的数值试验. 热带气象学报, 21(1): 13-23. Chen Y M, Qian Y F. 2005. Numerical study of influence of the SSTA in western Pacific warm pool on precipitation in the first flood period in South China. J Trop Meteor, 21(1): 13-23 (in Chinese)
    程正泉, 陈联寿, 刘燕等. 2007. 1960—2003年我国热带气旋降水的时空分布特征. 应用气象学报, 18(4): 427-434. Cheng Z Q, Chen L S, Liu Y, et al. 2007. The spatial and temporal characteristics of tropical cyclone-induced rainfall in China during 1960-2003. J Appl Meteor Sci, 18(4): 427-434 (in Chinese)
    何有海, 关翠华, 林锡贵等. 1998. 华南后汛期降雨量的振动和分布. 热带气象学报, 14(4): 359-363. He Y H, Guan C H, Lin X G, et al. 1998. Oscillation and distribution of rainfall during second rainy season in South China. J Trop Meteor, 14(4): 359-363 (in Chinese)
    胡娅敏, 翟盘茂, 罗晓玲等. 2014. 2013年华南前汛期持续性强降水的大尺度环流低频信号特征. 气象学报, 72(3): 465-477. Hu Y M, Zhai P M, Luo X L, et al. 2014. Large scale circulation and low frequency signal characteristics for the persistent extreme precipitation in the first rainy season over South China in 2013. Acta Meteor Sinica, 72(3): 465-477 (in Chinese)
    黄荣辉, 徐予红, 周连童. 1999. 我国夏季降水的年代际变化及华北干旱化趋势. 高原气象, 18(4): 465-476. Huang R H, Xu Y H, Zhou L T. 1999. The interdecadal variation of summer precipitations in China and the drought trend in North China. Plateau Meteor, 18(4): 465-476(in Chinese)
    黄晓莹, 谭浩波, 李菲等. 2009. 21世纪末华南汛期强降水变化分析. 气象科技, 37(4): 425-428. Huang X Y, Tan H B, Li F, et al. 2009. Changes of flood-season severe precipitation over South China in 2071-2100. Meteor Sci Technol, 37(4): 425-428 (in Chinese)
    雷小途, 陈联寿. 2001. 热带气旋的登陆及其与中纬度环流系统相互作用的研究. 气象学报, 59(5): 602-615. Lei X T, Chen L S. 2001. Tropical cyclone landfalling and its interaction with mid-latitude circulation systems. Acta Meteor Sinica, 59(5): 602-615 (in Chinese)
    李丽平, 章开美, 王超等. 2010. 近40年华南前汛期极端降水时空演变特征. 气候与环境研究, 15(4): 443-450. Li L P, Zhang K M, Wang C, et al. 2010. Temporal and spatial variations of extreme precipitation in the pre-flood period of South China in recent 40 years. Climatic Environ Res, 15(4): 443-450 (in Chinese)
    李秀珍, 梁卫, 温之平. 2010. 华南秋、冬、春季水汽输送特征及其与降水异常的联系. 热带气象学报, 26(5): 626-632. Li X Z, Liang W, Wen Z P. 2010. Characteristics of the atmospheric water vapor and its relationship with rainfall in South China in northern autumn, winter and spring. J Trop Meteor, 26(5): 626-632 (in Chinese)
    刘冬晴, 杨修群. 2010. 热带低频振荡影响中国东部冬季降水的机理. 气象科学, 30(5): 684-693. Liu D Q, Yang X Q. 2010. Mechanism responsible for the impact of Madden-Julian oscillation on the wintertime rainfall over eastern China. Sci Meteor Sin, 30(5): 684-693 (in Chinese)
    鹿世瑾. 1990. 华南气候. 北京: 气象出版杜, 189-195. Lu S J. 1990. Climate of Southern China. Beijing: China Meteor Press, 189-195 (in Chinese)
    罗哲贤. 1994. 能量频散对台风结构和移动的作用. 气象学报, 52(2): 149-156. Luo Z X. 1994. Effect of energy dispersion on structure and motion of tropical cyclone. Acta Meteor Sinica, 52(2): 149-156 (in Chinese)
    梅士龙, 管兆勇. 2008. 对流层上层斜压波包活动与2003年江淮流域梅雨的关系. 大气科学, 32(6): 1333-1340. Mei S L, Guan Z Y. 2008. Activities of baroclinic wave packets in the upper troposphere related to Meiyu of 2003 in the Yangtze River-Huaihe River valley. Chinese J Atmos Sci, 32(6): 1333-1340 (in Chinese)
    倪允琪, 周秀骥, 张人禾等. 2006. 我国南方暴雨的试验与研究. 应用气象学报, 17(6): 690-704. Ni Y Q, Zhou X J, Zhang R H, et al. 2006. Experiments and studies for heavy rainfall in southern China. J Appl Meteor Sci, 17(6): 690-704 (in Chinese)
    陶诗言, 张庆云. 1998. 亚洲冬夏季风对ENSO事件的响应. 大气科学, 22(4): 399-407. Tao S Y, Zhang Q Y. 1998. Response of the Asian winter and summer monsoon to ENSO events. Chin J Atmos Sci, 22(4): 399-407 (in Chinese)
    王东海, 夏茹娣, 刘英. 2011. 2008年华南前汛期致洪暴雨特征及其对比分析. 气象学报, 69(1): 137-148. Wang D H, Xia R D, Liu Y. 2011. A preliminary study of the flood causing rainstorm during the first rainy season in South China in 2008. Acta Meteor Sinica, 69(1): 137-148 (in Chinese)
    夏茹娣, 赵思雄, 孙建华. 2006. 一类华南锋前暖区暴雨β中尺度系统环境特征的分析研究. 大气科学, 30(5): 988-1008. Xia R D, Zhao S X, Sun J H. 2006. A study of circumstances of Meso-β-Scale systems of strong heavy rainfall in warm sector ahead of fronts in South China. Chinese J Atmos Sci, 30(5): 988-1088 (in Chinese)
    赵玉春, 王叶红. 2009. 近30年华南前汛期暴雨研究概述. 暴雨灾害, 28(3): 193-202, 228. Zhao Y C, Wang Y H. 2009. A review of studies on torrential rain during pre-summer flood season in South China since the 1980’s. Torrential Rain Disaster, 28(3): 193-202, 228 (in Chinese)
    郑益群, 钱永甫, 苗曼倩等. 2000. 青藏高原积雪对中国夏季风气候的影响. 大气科学, 24(6): 761-774. Zheng Y Q, Qian Y F, Miao M Q, et al. 2000. Effect of the Tibetan Plateau snow cover on China summer monsoon climate. Chinese J Atmos Sci, 24(6): 761-774 (in Chinese)
    Bonsal B R, Zhang X, Vincent L A, et al. 2001. Characteristics of daily and extreme temperatures over Canada. J Climate, 14(9): 1959-1976
    Chen Y, Zhai P M. 2013. Persistent extreme precipitation events in China during 1951-2010. Climate Res, 57(2): 143-155
    Cheng Z H, Kang D, Chen L S, et al. 1999. Interaction between tropical cyclone and Meiyu front. Acta Meteor Sinica, 13(1): 35-46
    Dare R A, Davidson N E, McBride J L. 2012. Tropical cyclone contribution to rainfall over Australia. Mon Wea Rev, 140(11): 3606-3619
    Goswami B N, Venugopal V, Sengupta D, et al. 2006. Increasing trend of extreme rain events over India in a warming environment. Science, 314(5804): 1442-1445
    Guan Z Y, Han J, Li M G. 2011. Circulation patterns of regional mean daily precipitation extremes over the middle and lower reaches of the Yangtze River during the boreal summer. Climate Res, 50(2-3): 171-185
    Guan Z Y, Jin D C. 2013. Two opposite extreme events in seasonal mean winter rainfall over East China during the past three decades. Atmos Ocean Sci Lett, 6(5): 240-247
    Jin D C, Guan Z Y, Cai J X, et al. 2015. Interannual variations of regional summer precipitation in Mainland China and their possible relationships with different teleconnections in the past five decades. J Meteor Soc Japan, 93(2): 265-283
    Jones C, Waliser D E, Lau K M, et al. 2004. Global occurrences of extreme precipitation and the Madden-Julian Oscillation: Observations and predictability. J Climate, 17(23): 4575-4589
    Karl T R, Knight R W. 1998. Secular trends of precipitation amount, frequency, and intensity in the United States. Bull Amer Meteor Soc, 79(2): 231-241
    Ke D, Guan Z Y. 2014. Variations in regional mean daily precipitation extremes and related circulation anomalies over central China during boreal summer. J Meteor Res, 28(4): 524-539
    Kistler R, Kalnay E, Collins W, et al. 2001. The NCEP-NCAR 50-year reanalysis: Monthly means CD-ROM and documentation. Bull Amer Meteor Soc, 82(2): 247-267
    Lau K M, Zhou Y P, Wu H T. 2008. Have tropical cyclones been feeding more extreme rainfall? J Geophys Res, 113(D23): D23113
    Li M G, Guan Z Y, Jin D C, et al. 2016. Anomalous circulation patterns in association with two types of daily precipitation extremes over southeastern China during boreal summer. J Meteor Res, 30(2): 183-202
    Luo H B, Yanai M. 1984. The large-scale circulation and heat sources over the Tibetan Plateau and surrounding areas during the early summer of 1979. Part Ⅱ: Heat and moisture budgets. Mon Wea Rev, 112(5): 966-989
    Nogueira R C, Keim B D. 2010. Annual volume and area variations in tropical cyclone rainfall over the Eastern United States. J Climate, 23(16): 4363-4374
    Stone D A, Weaver A J, Zwiers F W. 2000. Trends in Canadian precipitation intensity. Atmos Ocean, 38(2): 321-347
    Takaya K, Nakamura H. 2001. A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J Atmos Sci, 58(6): 608-627
    Wang B, Wu R G, Fu X H. 2000. Pacific-East Asian teleconnection: How does ENSO affect East Asian climate? J Climate, 13(9): 1517-1536
    Wang B, Wu R G, Lau K M. 2001. Interannual variability of the Asian summer monsoon: Contrasts between the Indian and the western North Pacific-East Asian monsoons. J Climate, 14(20): 4073-4090
    Wang Y Q, Zhou L. 2005. Correction to "observed trends in extreme precipitation events in China during 1961-2001 and the associated changes in large-scale circulation". Geophys Res Lett, 32(17): L17708
    Wu H, Zhai P M, Chen Y. 2016. A comprehensive classification of anomalous circulation patterns responsible for persistent precipitation extremes in South China. J Meteor Res, 30(4): 483-495
    Yamamoto R, Sakurai Y. 1999. Long-term intensification of extremely heavy rainfall intensity in recent 100 years. World Resour Rev, 11: 271-281
    Yao C, Yang S, Qian W H, et al. 2008. Regional summer precipitation events in Asia and their changes in the past decades. J Geophys Res, 113(D17): D17107
    You Q L, Kang S C, Aguilar E, et al. 2011. Changes in daily climate extremes in China and their connection to the large scale atmospheric circulation during 1961-2003. Climate Dyn, 36(11-12): 2399-2417
    Zhai P M, Zhang X B, Wan H, et al. 2005. Trends in total precipitation and frequency of daily precipitation extremes over China. J Climate, 18(7): 1096-1108
    Zhang Y S, Li T, Wang B. 2004. Decadal change of the spring snow depth over the Tibetan Plateau: The associated circulation and influence on the East Asian summer monsoon. J Climate, 17(14): 2780-2793

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700