用户名: 密码: 验证码:
石榴查尔酮合成酶蛋白的生物信息学分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Bioinformatics Analysis of CHS Protein in Pomegranate
  • 作者:冯立娟 ; 尹燕 ; 杨雪梅 ; 唐海霞 ; 李英朋 ; 鹿英
  • 英文作者:Feng Lijuan;Yin Yanlei;Yang Xuemei;Tang Haixia;Li Yingpeng;Lu Ying;Shandong Institute of Pomology;Guan County Dianzi Forestry Station;Shiheng Town Forestry and Fruit Station of Feicheng City;
  • 关键词:石榴 ; 花青苷 ; 查尔酮合成酶 ; 生物信息学
  • 英文关键词:Punica granatum;;Anthocyanin;;Chalcone synthase;;Bioinformatics
  • 中文刊名:AGRI
  • 英文刊名:Shandong Agricultural Sciences
  • 机构:山东省果树研究所;冠县店子乡林业站;肥城市石横镇林果站;
  • 出版日期:2019-02-28
  • 出版单位:山东农业科学
  • 年:2019
  • 期:v.51;No.330
  • 基金:山东省重点研发计划项目(2018GNC111009);; 山东省农业科学院农业科技创新工程学科团队项目(CXGC2018E22);; 山东省农业良种工程南种北繁项目(2017LZN023)
  • 语种:中文;
  • 页:AGRI201902002
  • 页数:6
  • CN:02
  • ISSN:37-1148/S
  • 分类号:13-18
摘要
本研究用生物信息学方法对石榴及其他19个物种CHS蛋白的系统进化和motif元件进行分析,重点预测分析石榴、巨桉和拟南芥CHS蛋白的理化性质、氨基酸组成、磷酸化位点和二级结构。结果表明,石榴与巨桉亲缘关系最近,与拟南芥最远。石榴、巨桉和拟南芥CHS蛋白由20种氨基酸组成,数量和比例存在差异,石榴和拟南芥中亮氨酸数量最多,巨桉中丙氨酸最多;存在丝氨酸、苏氨酸和酪氨酸3个磷酸化结合位点,多数发生在苏氨酸和丝氨酸位置上;二级结构由α-螺旋、延伸链、无规则卷曲和β-转角构成,α-螺旋和无规则卷曲占比较高。在20个物种CHS蛋白的motif元件中,石榴CHS蛋白motif数量和位置与巨桉完全一致,与大多数物种相似,与拟南芥差异较大。本研究结果可为深入研究CHS生物学功能及其调控石榴果实呈色的机理提供理论依据。
        The phylogenetic and motif elements of pomegranate and other 19 cultivars of CHS proteins were analyzed by bioinformatics methods in the study. The physicochemical properties, amino acid composition, phosphorylation sites and second structure of CHS proteins were emphatically analyzed in Punica granatum, Eucalyptus grandis and Arabidopsis thaliana. The results showed that Punica granatum had the closest relationship with Eucalyptus grandis and the farthest relationship with Arabidopsis thaliana. There were twenty amino acids in the CHS proteins of Punica granatum, Eucalyptus grandis and Arabidopsis thaliana, and the number and proportion were different. The leucine number was the highest in Punica granatum and Eucalyptus grandis, and alanine number was the highest in Arabidopsis thaliana. There were phosphorylation binding sites of serine, threonine and tyrosine, respectively, most of them existed in threonine and serine. The secondary structure was consist of alpha helix, extended strand, random coil and beta-turn, in which,the proportion of alpha helix and random coil were higher. In the motif elements of CHS protein of twenty cultivars, the number and location of CHS protein motifs in Punica granatum were identical to Eucalyptus grandis, similar to most cultivars, and significantly different from Arabidopsis thaliana. The results could provide theoretical bases for the further study on biological functions of CHS and mechanism of regulating the coloration of pomegranate fruit.
引文
[1] 张蕾, 朱立新, 徐川, 等. 查尔酮合酶基因对桃果实花色苷代谢的影响[J]. 园艺学报, 2015, 42 (1): 31-37.
    [2] 袁华招, 赵密珍, 吴伟民, 等. 葡萄CHS和STS基因家族生物信息学鉴定和表达分析[J]. 植物遗传资源学报, 2016,17(4):756-765.
    [3] 梅志栋, 张贺, 刘晓妹, 等. 杧果查尔酮合成酶基因(CHS1)的克隆与表达分析[J]. 果树学报, 2015, 32(6):1077-1084,1315.
    [4] 徐靖, 朱家红, 王效宁, 等. 甘薯查尔酮合成酶基因IbCHS1的克隆和表达分析[J]. 分子植物育种, 2018, 16(6): 1752-1757.
    [5] 李苗, 石磊, 李国旗. 植物查尔酮合成酶超基因家族组成及分子进化[J]. 分子植物育种, 2016, 14(6): 1421-1429.
    [6] Chen L, Guo Y R, Zhang X R, et al. Effects of 5-aminolevulinicacid on the content of total flavonoids and expression of CHS and CHI genes in young apples[J]. Agricultural Biotechnology, 2015, 4(3): 39-42.
    [7] 骆菁菁, 李虹, 柏斌斌,等. 光照对月季‘光谱’花青素合成及其CHS和DFR基因表达的影响[J].分子植物育种, 2013, 11(1):126-131.
    [8] 陈磊, 郭玉蓉, 张晓瑞, 等. ALA对苹果幼果黄酮含量及CHS和CHI基因表达的影响[J]. 西北农林科技大学学报(自然科学版), 2014, 42(12):161-165,172.
    [9] 高雄杰, 赵继荣, 毕阳,等. 采后硅酸钠处理及损伤接种对厚皮甜瓜CHS基因的诱导表达[J]. 甘肃农业大学学报, 2010, 45(3): 48-51.
    [10] Radunic M, ?pika M J, Ban S G, et al. Physical and chemical properties of pomegranate fruit accessions from Croatia[J]. Food Chemistry, 2015, 177:53-60.
    [11] 冯立娟, 尹燕雷, 焦其庆, 等. 石榴PAL 基因的克隆与表达分析[J]. 核农学报, 2018, 32(7): 1320-1329.
    [12] Zhao X Q, Yuan Z H, Feng L J, et al. Cloning and expression of anthocyanin biosynthetic genes in red and white pomegranate [J]. Journal of Plant Research, 2015, 128:687-696.
    [13] 吴忠红, 杜鹃, 阿塔吾拉铁木尔, 等. 石榴花色苷相关基因( PgANS、PgCHS、PgACT) 的克隆与序列分析[J]. 新疆农业科学, 2017, 54(1): 88-94.
    [14] Yuan Z, Fang Y, Zhang T, et al. The pomegranate (Punica granatum L.) genome provides insights into fruit quality and ovule developmental biology[J]. Plant Biotechnology Journal, 2017, 16(7): 1363-1374.
    [15] 常丽丽, 王力敏, 郭安平, 等. 木薯叶片响应干旱胁迫的磷酸化蛋白质组差异分析[J]. 植物生理学报, 2018, 54 (1): 133-144.
    [16] 肖培连, 冯睿杰, 侯丽霞, 等. 葡萄WRKY18基因的克隆及表达特性分析[J]. 植物生理学报, 2015, 51(3): 391-398.
    [17] 王志彬, 申晚霞, 朱世平, 等. 柑橘 CHS 基因序列多态性及表达水平对类黄酮生物合成的影响[J]. 园艺学报, 2015, 42 (3): 435-444.
    [18] 戚楠楠, 张晓燕, 苏娜娜, 等. UV-A诱导大豆芽苗菜下胚轴中花青苷积累的分子机理[J]. 中国农业科学, 2015, 48(12): 2408-2416.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700