用户名: 密码: 验证码:
基于Py-GC-MS/MS技术的高寒草原土壤有机质不同组分指纹特征研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on the fingerprints of soil organic components in alpine grassland based on Py-GC-MS/MS Technology
  • 作者:陈秋宇 ; 吴应琴 ; 雷天柱 ; 斯贵才 ; 张更新
  • 英文作者:CHEN Qiuyu;WU Yingqin;LEI Tianzhu;SI Guicai;ZHANG Gengxin;Key Laboratory of Alpine Ecology and Biodiversity,Institute of Tibetan Plateau Research,China Academy of Sciences;University of Chinese Academy of Sciences;Lanzhou Institute of Geology,Chinese Academy of Science;
  • 关键词:土壤有机质 ; 密度分组技术 ; 热裂解气相色谱质谱联用技术
  • 英文关键词:soil organic matter;;density grouping technique;;pyrolysis gas chromatography-mass spectrometry
  • 中文刊名:STXB
  • 英文刊名:Acta Ecologica Sinica
  • 机构:中国科学院青藏高原研究所中国科学院高寒生态学与生物多样性重点实验室;中国科学院大学;中国科学院地质与地球物理研究所兰州油气资源研究中心;
  • 出版日期:2018-01-08 09:13
  • 出版单位:生态学报
  • 年:2018
  • 期:v.38
  • 基金:国家重点基础研究发展计划(973计划)专题项目(2013CB956002)
  • 语种:中文;
  • 页:STXB201808024
  • 页数:10
  • CN:08
  • ISSN:11-2031/Q
  • 分类号:263-272
摘要
采用热裂解气相色谱质谱联用(Py-GC-MS/MS)技术来研究高寒草原土壤有机质5个密度组分之间的指纹差异。对150种热解产物进行定性定量分析,并将其根据相似的化学性质分为:烷基类化合物、芳烃及多环芳烃、木质素、酚类物质、多糖、含氮化合物及几丁质。研究结果表明:在高寒草原土壤中,F1(密度为小于1.6g/cm~3)组分主要为植物碎屑,虽然该组份在整体土壤中质量含量较少(0.13%)但其有机质含量相对较高(5.7%),该组份中含有较多的木质素及长链烷基类化合物(主要来源于植物),且随着密度的增加,此类化合物的含量逐渐减少。F2(密度为1.6—1.8g/cm~3)、F3(密度为1.8—2.0g/cm~3)及F4(密度为2.0—2.25g/cm~3)3个组分化学性质相似,其有机化合物的含量在密度组分中呈现增加或减少的过渡状态。F5(密度大于2.25g/cm~3)组分是该土壤的主要组成部分,其质量含量高达98%,该组份中的微生物指纹信息(微生物来源的多糖及含氮化合物)均高于前4个组分。同时,芳烃及多环芳烃这类难降解的物质随着密度的增大逐渐累积,在F5组分中富集。
        The pyrolysis gas chromatography-mass spectrometry( Py-GC-MS/MS) technique was used to study the differences in five density components of soil organic matter in alpine grassland. In this study,150 pyrolysis products were qualitatively and quantitatively analyzed,and they were classified according to their similar chemical properties into alkyl compounds,aromatics and polyaromatics,lignin,phenols,polysaccharides,N-compounds and chitin. This study found that in alpine grassland,the F1 component,which contains compounds whose densities are less than 1.6 g/cm~3 were composed of plant debris. Although the percentage of this component in the whole soil was low( only 0.13%),its organic content was relatively high( 5.7%). The F1 component contained more lignin and long chain alkyl compounds,which were mostly from plants,and the content of these compounds decreased gradually as the density increased. The F2( compound densities from1.6 to 1.8 g/cm~3),F3(compound densities from 1.8 to 2 g/cm~3),and F4( compound densities from 2 to 2.25 g/cm~3)components had similar chemical properties, and their organic compound contents showed a transition state, which increased or decreased among the density components. The F5( compound density greater than 2.25 g/cm~3) component is the major part of the soil where its content is as high as 98%. The microbial polysaccharides and N-compounds( mainly from microorganisms) in the F5 component were significantly higher than in the first four components,which indicated that the F5 component contained more microbial fingerprint information. The recalcitrant substances, such as aromatics and polyaromatics,were also found in the F5 fraction.
引文
[1]Randall E W,Mahieu N,Powlson D S,Christensen B T.Fertilization effects on organic matter in physically fractionated soils as studied by 13C NMR:Results from two long-term field experiments.European Journal of Soil Science,2010,46(4):557-565.
    [2]Christensen B T.Physical fractionation of soil and organic matter in primary particle size and density separates.//Stewart B A,eds.Advances in Soil Science.New York:Springer,1992.
    [3]Christensen B T.Physical fractionation of soil and structural and functional complexity in organic matter turnover.European Journal of Soil Science,2001,52(3):345-353.
    [4]Dalal R C,Mayer R J.Long-term trends in fertility of soils under continuous cultivation and cereal cropping in southern Queensland.II.Total organic carbon and its rate of loss from the soil profile.Australian Journal of Soil Research,1986,24(2):281-292.
    [5]武天云,Schoenau J J,李凤民,钱佩源,Malhi S S.耕作对黄土高原和北美大草原三种典型农业土壤有机碳的影响.应用生态学报,2003,14(12):2213-2218.
    [6]Gleixner G,Poirier N,Bol R,Balesdent J.Molecular dynamics of organic matter in a cultivated soil.Organic Geochemistry,2002,33(3):357-366.
    [7]Six J,Elliott E T,Paustian K,Doran J W.Aggregation and soil organic matter accumulation in cultivated and native grassland soils.Soil Science Society of America Journal,1998,62(5):1367-1377.
    [8]Russell A E,Cambardella C A,Ewel J J,Parkin T B.Species,rotation,and life-form diversity effects on soil carbon in experimental tropical ecosystems.Ecological Applications,2004,14(1):47-60.
    [9]Lu Q,Li W Z,Zhang D,Zhu X F.Analytical pyrolysis-gas chromatography/mass spectrometry(Py-GC/MS)of sawdust with Al/SBA-15 catalysts.Journal of Analytical and Applied Pyrolysis,2009,84(2):131-138.
    [10]Mészáros E,Jakab E,Várhegyi G.TG/MS,Py-GC/MS and THM-GC/MS study of the composition and thermal behavior of extractive components of Robinia pseudoacacia.Journal of Analytical and Applied Pyrolysis,2007,79(1):61-70.
    [11]Irwin W J.Analytical pyrolysis-an overview.Journal of Analytical and Applied Pyrolysis,1979,1(1):3-25.
    [12]Wilkins R W T,George S C.Coal as a source rock for oil:a review.International Journal of Coal Geology,2002,50(1/4):317-361.
    [13]Grandy A S,Neff J C.Molecular C dynamics downstream:The biochemical decomposition sequence and its impact on soil organic matter structure and function.Science of the Total Environment,2008,404(2/3):297-307.
    [14]Zhou Z,Zhang Z,Zha T,Luo Z,Zheng J,Sun O J.Predicting soil respiration using carbon stock in roots,litter and soil organic matter in forests of Loess Plateau in China.Soil Biology and Biochemistry,2013,57(3):135-143.
    [15]游庆龙,康世昌,李潮流,李茂善,刘景时.青藏高原纳木错气象要素变化特征.气象,2007,33(3):54-60.
    [16]旦增塔庆,旭日,魏学红,魏达,刘永稳,王迎红.西藏纳木错高寒草原、高寒草甸和沼泽化草甸主要温室气体通量对比研究.草地学报,2014,22(3):493-501.
    [17]Almendros G,Guadalix M E,González-Vila F J,Martin F.Preservation of aliphatic macromolecules in soil humins.Organic Geochemistry,1996,24(6/7):651-659.
    [18]Feng X,Simpson M J.The distribution and degradation of biomarkers in Alberta grassland soil profiles.Organic Geochemistry,2007,38(9):1558-1570.
    [19]Jandl G,Leinweber P,Schulten H R,Ekschmitt K.Contribution of primary organic matter to the fatty acid pool in agricultural soils.Soil Biology and Biochemistry,2005,37(6):1033-1041.
    [20]Otto A,Simpson M J.Degradation and preservation of vascular plant-derived biomarkers in grassland and forest soils from western canada.Biogeochemistry,2005,74(3):377-409.
    [21]Chiavari G,Galletti G C.Pyrolysis—gas chromatography/mass spectrometry of amino acids.Journal of Analytical and Applied Pyrolysis,1992,24(2):123-137.
    [22]Schulten H R,Plage B,Schnitzer M.A chemical structure for humic substances.Die Naturwissenschaften,1991,78(7):311-312.
    [23]Kaal J,Rumpel C.Can pyrolysis-GC/MS be used to estimate the degree of thermal alteration of black carbon?Organic Geochemistry,2009,40(12):1179-1187.
    [24]Saiz-Jimenez C.Production of alkylbenzenes and alkylnaphthalenes upon pyrolysis of unsaturated fatty acids.Naturwissenschaften,1994,81(10):451-453.
    [25]Bol R,Poirier N,Balesdent J,Gleixner G.Molecular turnover time of soil organic matter in particle-size fractions of an arable soil.Rapid Communications in Mass Spectrometry,2009,23(16):2551-2558.
    [26]Heim A,Schmidt M W I.Lignin turnover in arable soil and grassland analysed with two different labelling approaches.European Journal of Soil Science,2007,58(3):599-608.
    [27]Gleixner G,Bol R,Balesdent J.Molecular insight into soil carbon turnover.Rapid Communications in Mass Spectrometry,1999,13(13):1278-1283.
    [28]Kindler R,Miltner A,Thullner M,Richnow H H,Kstner M.Fate of bacterial biomass-derived fatty acids in soil and their contribution to soil organic matter.Organic Geochemistry,2009,40(1):29-37.
    [29]Stankiewicz B A,Bergen P F V,Duncan I J,Carter J F,Briggs D E,Evershed R P.Recognition of chitin and proteins in invertebrate cuticles using analytical pyrolysis/gas chromatography and pyrolysis/gas chromatography/mass spectrometry.Rapid Communications in Mass Spectrometry,1996,10(14):1747.
    [30]Boone R D.Light-fraction soil organic matter:origin and contribution to net nitrogen mineralization.Soil Biology and Biochemistry,1994,26(11):1459-1468.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700