用户名: 密码: 验证码:
海底底质分类反向散射强度三维概率密度法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:3D histogram of backscatter strength for seafloor substrates classification
  • 作者:金绍华 ; 李家彪 ; 吴自银 ; 边刚 ; 崔杨
  • 英文作者:JIN Shaohua;LI Jiabiao;WU Ziyin;BIAN Gang;CUI Yang;Key Laboratory of Submarine Geosciences of SOA;Department of Military Oceanography and Hydrography and Cartography,Dalian Naval Academy;
  • 关键词:多波束 ; 反向散射强度 ; 海底入射角 ; 三维概率密度图 ; 海底底质分类
  • 英文关键词:multibeam;;backscatter strength;;seafloor incidence angle;;3D histogram;;seafloor substrates classification
  • 中文刊名:CHXB
  • 英文刊名:Acta Geodaetica et Cartographica Sinica
  • 机构:国家海洋局海底科学重点实验室;海军大连舰艇学院军事海洋与测绘系;
  • 出版日期:2019-01-15
  • 出版单位:测绘学报
  • 年:2019
  • 期:v.48
  • 基金:国家自然科学基金(41876103;41576105;41374018;41830540)~~
  • 语种:中文;
  • 页:CHXB201901015
  • 页数:8
  • CN:01
  • ISSN:11-2089/P
  • 分类号:128-135
摘要
反向散射强度随入射角变化信息蕴含海底底质特性,是多波束海底底质分类的重要数据源。目前,多波束海底底质分类主要提取平均反向散射强度随入射角的变化信息或基于声呐图像,没有综合考虑两者的相关信息。本文综合考虑平均反向散射强度随入射角变化信息及其概率密度分布,绘制三维概率密度图,提出了基于反向散射强度三维概率密度图的海底底质分类方法。实例计算结果表明:该方法能直观表达多波束条带覆盖区内不同海底底质类型的数量,有效判断不同海底底质类型的边界,实现海底底质类型的快速识别。
        Backscatter strength angular response embodies the seafloor substrates classification,which are the important data sources for multibeam seafloor classification.At present,multibeam seafloor classification mainly extract mean backscatter strength angular response or sonar image without considering the relevant information of two aspects.This paper comprehensively analyzes backscatter strength angular response and probability distribution of backscatter strength,portraits 3D histogram,and proposes ways of seafloor classification based on 3D histogram of backscatter strength.Results show that the method can directly express different numbers of seafloor classification within multibeam swath,effectively judge the boundaries and realize the fast identification of different seafloor substrates.
引文
[1]李家彪,王小波,华祖根,等.多波束勘测原理技术与方法[M].北京:海洋出版社,1999.LI Jiabiao,WANG Xiaobo,HUA Zugen,et al.Multibeam sounding surveying:principle,technology and data processing methods[M].Beijing:Ocean Press,1999.
    [2]赵建虎,刘经南.多波束测深及图像数据处理[M].武汉:武汉大学出版社,2008.ZHAO Jianhu,LIU Jingnan.Multibeam bathymetric surveying and image processing[M].Wuhan:Wuhan University Press,2008.
    [3]阳凡林,李家彪,吴自银,等.浅水多波束勘测数据精细处理方法[J].测绘学报,2008,37(4):444-450,457.YANG Fanlin,LI Jiabiao,WU Ziyin,et al.The methods of high quality post-processing for shallow multibeam data[J].Acta Geodaetica et Cartographica Sinica,2008,37(4):444-450,457.
    [4]王海栋,柴洪洲,王敏.多波束测深数据的抗差Kriging拟合[J].测绘学报,2011,40(2):238-242,248.WANG Haidong,CHAI Hongzhou,WANG Min.Multibeam bathymetry fitting based on robust Kriging[J].Acta Geodaetica et Cartographica Sinica,2011,40(2):238-242,248.
    [5]赵荻能,吴自银,周洁琼,等.声速剖面精简运算的改进D-P算法及其评估[J].测绘学报,2014,43(7):681-689.ZHAO Dineng,WU Ziyin,ZHOU Jieqiong,et al.A method for streamlining and assessing sound velocity profiles based on improved D-P algorithm[J].Acta Geodaetica et Cartographica Sinica,2014,43(7):681-689.
    [6] SIMMONS S M,PARSONS D R,BEST J L,et al.An evaluation of the use of a multibeam echo-sounder for observations of suspended sediment[J].Applied Acoustics,2017,126(1):81-90.
    [7]严俊,张红梅,赵建虎,等.多波束声呐后向散射数据角度响应模型的改进算法[J].测绘学报,2016,45(11):1301-1307.DOI:10.11947/j.AGCS.2016.20160169.YAN Jun,ZHANG Hongmei,ZHAO Jianhu,et al.Study on improvement of multibeam backscatter angular response model[J].Acta Geodaetica et Cartographica Sinica,2016,45(11):1301-1307.DOI:10.11947/j.AGCS.2016.20160169.
    [8]何林帮.基于多波束和浅剖的海底浅表层沉积物分类关键问题研究[J].测绘学报,2016,45(12):1498.DOI:10.11947/j.AGCS.2016.20160466.HE Linbang.Research on key issues of sediment classification for seabed and sub-bottom based on multi-beam and sub-bottom profile echo intensity[J].Acta Geodaetica et Cartographica Sinica,2016,45(12):1498.DOI:10.11947/j.AGCS.2016.20160466.
    [9]金绍华,翟京生,刘雁春,等.海底入射角对多波束反向散射强度的影响及其改正[J].武汉大学学报(信息科学版),2011,36(9):1081-1084.JIN Shaohua,ZHAI Jingsheng,LIU Yanchun,et al.Influence of seafloor incidence angle on multibeam backscatter intensity and corrected method[J].Geomatics and Information Science of Wuhan University,2011,36(9):1081-1084.
    [10] JACKSON D R,BAIRD A M,Crisp J J,et al.High-frequency bottom backscatter measurements in shallow water[J].Journal of the Acoustical Society of America,1986,80(4):1188-1199.
    [11] HUGHES CLARKE J E,DANFORTH B W,VALENTINE P.Areal seabed classification using backscatter angular response at 95kHz[C]∥Proceedings of SACLANT Conference on High Frequency Acoustics in Shallow Water.Lerici:NATO SACLANT Undersea Research Centre,1997.
    [12] FONSECA L,MAYER L.Remote estimation of surficial seafloor properties through the application angular range analysis to multibeam sonar data[J].Marine Geophysical Researches,2007,28(2):119-126.
    [13]金绍华,肖付民,边刚,等.利用多波束反向散射强度角度响应曲线的底质特征参数提取算法[J].武汉大学学报(信息科学版),2014,39(12):1493-1498.JIN Shaohua,XIAO Fumin,BIAN Gang,et al.A method for extracting seabed feature parameters based on the angular response curve of multibeam backscatter strength[J].Geomatics and Information Science of Wuhan University,2014,39(12):1493-1498.
    [14] PACE N G,GAO H.Swathe seabed classification[J].IEEE Journal of Oceanic Engineering,1988,13(2):83-90.
    [15] AUGUSTIN J M,LE SUAVE R,LURTON X,et al.Contribution of the multibeam acoustic imagery to the exploration of the sea-bottom[J].Marine Geophysical Researches,1996,18(2-4):459-486.
    [16] ENGQUIST B,FREDERICK C,HUYNH Q,et al.Seafloor identification in sonar imagery via simulations of Helmholtz equations and discrete optimization[J].Journal of Computational Physics,2017,338(2):477-492.
    [17] DE MOUSTIER C,MATSUMOTO H.Seafloor acoustic remote sensing with multibeam echo-sounders and bathymetric sidescan sonar systems[J].Marine Geophysical Researches,1993,15(1):27-42.
    [18] PRESTON J.Automated acoustic seabed classification of multibeam images of stanton banks[J]. Applied Acoustics,2009,70(10):1277-1287.
    [19] COLLIER J S,BROWN C J.Correlation of sidescan backscatter with grain size distribution of surficial seabed sediments[J].Marine Geology,2005,214(4):431-449.
    [20] MONTEYS X,HUNG P,SCOTT G,et al.The Use of Multibeam backscatter angular response for marine sediment characterisation by comparison with shallow electromagnetic conductivity[J].Applied Acoustics,2016,112(1):181-191.
    [21]HANIOTIS S,CERVENKA P,NEGREIRA C,et al.Seafloor segmentation using angular backscatter responses obtained at sea with a forward-looking sonar system[J].Applied Acoustics,2015,89(2):306-319.
    [22]金绍华,翟京生,刘雁春,等.Simrad EM多波束声纳系统回波强度数据的分析与应用[J].海洋技术,2011,30(1):48-51.JIN Shaohua,ZHAI Jingsheng,LIU Yanchun,et al.Analysis and application of echo intensity data in Simrad EM multibeam sonar system[J].Ocean Technology,2011,30(1):48-51.
    [23] HAMILTON L J,PARNUM I.Acoustic seabed segmentation from direct statistical clustering of entire multibeam sonar backscatter curves[J].Continental Shelf Research,2011,31(2):138-148.
    [24] JACKSON D R,BRIGGS K B.High-frequency bottom backscattering:roughness versus sediment volume scattering[J].Journal of the Acoustical Society of America,1992,92(2):962-977.
    [25] LE CHENADEC G,BOUCHER J M,LURTON X.Angular dependence of K-distributed sonar data[J].IEEE Transactions on Geoscience and Remote Sensing,2007,45(5):1224-1235.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700