用户名: 密码: 验证码:
浙北地区晚中生代侵入岩锆石U-Pb年代学及Hf同位素地球化学:成因演化过程及其构造环境示踪
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Zircon U-Pb Ages and Hf Isotopic Compositions of the Late Mesozoic Intrusive Rocks in Northern Zhejiang: Implications for Genetic Evolution and Tectonic Environment
  • 作者:唐增才 ; 孟祥随 ; 董学发 ; 吴小勇 ; 陈忠大 ; 余盛强 ; 赵旭东
  • 英文作者:TANG Zengcai;MENG Xiangsui;DONG Xuefa;WU Xiaoyong;CHEN Zhongda;YU Shengqiang;ZHAO Xudong;Zhejiang Institute of Geological Survey;School of Earth Science, China University of Geosciences(Wuhan);School of Earth Sciences and Resources,China University of Geosciences(Beijing);
  • 关键词:锆石LA-ICP-MS ; U-Pb年龄 ; 地球化学 ; 锆石Hf同位素 ; 浙北
  • 英文关键词:LA-ICP-MS U-Pb dating of zircon;;geochemistry;;zircon Hf isotope;;northern Zhejiang
  • 中文刊名:DGYK
  • 英文刊名:Geotectonica et Metallogenia
  • 机构:浙江省地质调查院;中国地质大学(武汉)地球科学学院;中国地质大学(北京)地球科学与资源学院;
  • 出版日期:2018-04-15
  • 出版单位:大地构造与成矿学
  • 年:2018
  • 期:v.42;No.163
  • 基金:中国地质调查局项目(12120114068901);; 浙江省国土资源厅项目(2014004)联合资助
  • 语种:中文;
  • 页:DGYK201802017
  • 页数:17
  • CN:02
  • ISSN:44-1595/P
  • 分类号:213-229
摘要
浙北地区位于扬子陆块东南缘,中生代岩浆侵入活动强烈,发育有何村石英二长岩、康山、沈家墈、泗岭花岗岩和凤凰山正长花岗岩等岩体。锆石LA-ICP-MS U-Pb定年结果表明,何村石英二长岩侵位时间为149.2±1.1 Ma,康山花岗岩形成于137.4±1.2 Ma,沈家墈、泗岭花岗岩和凤凰山正长花岗岩的成岩年龄在133.6±0.95 Ma~131.3±1.7 Ma之间。地球化学分析结果显示,何村石英二长岩为高钾钙碱性系列准过铝质I型花岗岩,高Rb、Th、U、K,贫Nb、Ta、Ti,中等的Eu负异常(δEu=0.78~0.79),具有类似岛弧岩浆岩的特征,锆石饱和温度为826~830℃。康山、沈家墈、泗岭花岗岩及凤凰山正长花岗岩地球化学特征相似,岩石富Si O2,高Ga、Zr、Nb和Y,贫Al2O3、Sr、Ba、Ti和P,强烈的Eu负异常(δEu=0.02~0.12);区别在于前者Fe2O3T含量为0.63%~0.89%,母岩浆温度为788~814℃,显示高分异I型特征;后三者Fe2O3T含量为1.02%~1.57%,母岩浆温度为847~868℃,属铝质A型花岗岩。锆石Hf同位素研究表明,何村石英二长岩和康山花岗岩εHf(t)变化范围分别集中在-3.79~-1.67和-6.59~-5.23之间,二阶段模式年龄(tDM2)变化范围对应于1162~1279 Ma和1350~1423 Ma,说明其源区物质可能主要来自中元古代地壳;沈家墈、泗岭花岗岩和凤凰山正长花岗岩εHf(t)主要集中在-4.24~2.48之间,tDM2主要集中于915~1161 Ma之间,说明岩体的源区物质来自于中-新元古代江南火山岛弧,εHf(t)值逐渐增大,表明越来越多的幔源物质或新生地壳参与成岩。浙北地区三类岩体分别形成于晚侏罗世古太平洋板块俯冲的挤压、早白垩世板块撤离挤压向伸展背景的转换和后造山拉张背景下岩石圈减薄等3个阶段。
        Mesozoic intrusions are widespread in northern Zhejiang, the southeastern margin of the Yangtze Block, within which five intrusions were selected for investigation, including the Hecun quartz monzonite, the Kangshan, Shenjiakan, and Siling granites, and the Fenghuangshan syenogranite. The Hecun quartz monzonite is metaluminous and high-K calc-alkalic, showing I-type features such as high LILE(Rb, K, Th, U) and relatively low HFSE(Nb, Ta, Ti) concentrations with mild negative Eu anomalies(δEu=0.78–0.79). The Kangshan, Shenjiakan, and Siling granites and the Fenghuangshan syenogranite have similar geochemical features, including relatively low Al2 O3, Sr, Ba, Ti, P, extremely negative Eu anomalies(δEu=0.02–0.12), and high Si O2, Ga, Zr, Nb, Y. However, the Kangshan granite has Fe2 O3 T of 0.63%–0.89% and magma temperatures of 788–814 ℃, showing characteristics of highly fractionated I-type granites, whereas the Shenjiakan and Siling granites and the Fenghuangshan syenogranite have higher Fe2 O3 T(1.02%– 1.57%) and high magma temperatures(847–868 ℃), suggestive of A-type affinity. Zircon U-Pb dating of the Hecun quartz monzonite, the Kangshan, Shenjiakan, and Siling granites and the Fenghuangshan syenogranite yielded ages of 149.2±1.1 Ma, 137.4±1.2 Ma, 133.6±0.95 Ma, and 131.3±1.7 Ma, respectively. The Hecun quartz monzonite and the Kangshan granite have εHf(t) values in ranges of-3.79 to-1.67 and-6.59 to-5.23, respectively, and crust Hf model ages(tDM2) of 1162–1279 Ma and 1350–1423 Ma correspondingly, which suggest that these granites were likely originated from remelting of Mesoproterozoic crustal materials. In contrasts, the Shenjiakan and Siling granites and the Fenghuangshan syenogranite have εHf(t) values of-4.24 to 2.48 and crust Hf model ages(tDM2) of 915–1161 Ma, which suggest that these granites were mainly originated from remelting of the Meso-Neoproterozoic Jiangnan Island Arc with substantial mantle input. Combined with previous results, we infer that the Hecun quartz monzonite was formed in a subduction setting in the late Jurassic, and the Kangshan granite formed in a compression to extension transition stage of the post-collisional environment, while the Shenjiakan and Siling granites and the Fenghuangshan syenogranite formed in an extensional setting of Early Cretaceous.
引文
陈志洪,邢光福,郭坤一,曾勇,匡福祥,贺振宇,柯学,余明刚,赵希林,张勇.2011.长江中下游成矿带九瑞矿集区(北部)含矿岩体的锆石U-Pb定年及其地质意义.地质学报,85(7):1146-1158.
    高林志,刘燕学,丁孝忠,宋志瑞,黄志忠,张传恒,张恒,史志刚.2013.江山?绍兴断裂带铁沙街组变流纹岩SHRIMP锆石U-Pb测年及其意义.地质通报,32(7):996-1005.
    华仁民,陈培荣,张文兰,刘晓东,陆建军,林锦富,姚军明,戚华文,张展适,顾晨彦.2003.华南中新生代与花岗岩类有关的成矿系统.中国科学(D辑),33(4):335-343.
    华仁民,陈培荣,张文兰,陆建军.2005.论华南地区中生代3次大规模成矿作用.矿床地质,24(2):99-107.
    华仁民,李光来,张文兰,胡东泉,陈培荣,陈卫锋,王旭东.2010.华南钨和锡大规模成矿作用的差异及其原因初探.矿床地质,29(1):9-15.
    华仁民,毛景文.1999.试论中国东部中生代成矿大爆发.矿床地质,18(4):300-308.
    华仁民,张文兰,姚军明,陈培荣.2006.华南两种类型花岗岩成岩?成矿作用的差异.矿床地质,25(S1):127-130.
    李福林,周汉文,唐增才,李益龙,汪发祥,徐于晨,覃洪锋,罗微,关成国.2011.浙江淳安木瓜基性岩墙群U-Pb年龄、地球化学特征及意义.地球化学,40(1):22-34.
    李晓峰,Watanabe Yasushi,华仁民,毛景文.2008.华南地区中生代Cu-(Mo)-W-Sn矿床成矿作用与洋岭/转换断层俯冲.地质学报,82(5):625-640.
    李小伟,莫宣学,赵志丹,朱弟成.2010.关于A型花岗岩判别过程中若干问题的讨论.地质通报,29(2?3):278-285.
    毛建仁,高桥浩,厉子龙,中岛隆,叶海敏,赵希林,周洁,胡青,曾庆涛.2009.中国东南部与日本中?新生代构造?岩浆作用对比研究.地质通报,28(7):844-856.
    毛景文,陈懋弘,袁顺达,郭春丽.2011.华南地区钦杭成矿带地质特征和矿床时空分布规律.地质学报,85(5):636-657.
    毛景文,谢桂青,程彦博,陈毓川.2009.华南地区中生代主要金属矿床模型.地质论评,55(3):347-354.
    毛景文,谢桂青,郭春丽,袁顺达,程彦博,陈毓川.2008.华南地区中生代主要金属矿床时空分布规律和成矿环境.高校地质学报,14(4):510-526.
    毛景文,谢桂青,李晓峰,张长青,梅燕雄.2004.华南地区中生代大规模成矿作用与岩石圈多阶段伸展.地学前缘,11(1):45-55.
    唐燕文,谢玉玲,李应栩,邱立明,刘保顺,李媛,张欣欣,姜妍岑,韩宇达.2012.浙江安吉坞山关杂岩体岩相学和岩石地球化学特征及岩石成因.矿床地质,31(4):903-916.
    唐燕文,谢玉玲,李应栩,邱立明,张欣欣,韩宇达,姜妍岑.2013.浙江安吉多金属矿区坞山关杂岩体锆石LA-ICP-MS U-Pb年龄、地球化学特征及地质意义.地质论评,59(4):702-715.
    唐增才,董学发,胡文杰,孟祥随,荣一萍.2014.浙西闲林岩体的锆石SHRIMP U-Pb定年及其地质意义.现代地质,28(5):884-892.
    王强,赵振华,熊小林.2000.桐柏?大别造山带燕山晚期A型花岗岩的厘定.岩石矿物学杂志,19(4):297-306.
    吴元保,郑永飞.2004.锆石成因矿物学研究及其对U-Pb年龄解释的制约.科学通报,49(16):1589-1604.
    谢玉玲,唐燕文,李应栩,李媛,刘保顺,邱立明,张欣欣,姜妍岑.2012a.浙江安吉铅锌多金属矿床岩浆侵位序列与成矿控制.岩石学报,28(10):3334-3346.
    谢玉玲,唐燕文,李应栩,邱立明,刘保顺,李媛,张欣欣,韩宇达,姜妍岑.2012b.浙江安吉铅锌多金属矿区细粒花岗岩的岩石化学、年代学及成矿意义探讨.矿床地质,31(4):891-902.
    邢光福,卢清地,陈荣,张正义,聂童春,李龙明,黄家龙,林敏.2008.华南晚中生代构造体制转折结束时限研究--兼与华北燕山地区对比.地质学报,82(4):451-463.
    徐德明,蔺志永,龙文国,张鲲,王磊,周岱,黄皓.2012.钦杭成矿带的研究历史和现状.华南地质与矿产,28(4):277-289.
    杨明桂,黄水保,楼法生,唐维新,毛素斌.2009.中国东南陆区岩石圈结构与大规模成矿作用.中国地质,36(3):528-543.
    翟裕生,姚书振,林新多.1992.长江中下游地区铁铜矿床.北京:地质出版社:1-120.
    张岳桥,徐先兵,贾东,舒良树.2009.华南早中生代从印支期碰撞构造体系向燕山期俯冲构造体系转换的形变记录.地学前缘,16(1):234-247.
    赵海玲,狄永军,邓晋福,王成,戴圣潜,莫兆.2007.浙赣皖相邻区与德兴、铜陵矿集区燕山期花岗岩类岩石对比研究及其成矿.岩石矿物学杂志,26(1):13-20.
    周金城,王孝磊,邱检生.2014.江南造山带新元古代构造?岩浆演化.北京:科学出版社:1-282.
    周涛发,袁峰,侯明金,杜建国,范裕,朱光,岳书仓.2004.江南隆起带东段皖赣相邻区燕山期花岗岩类的成因及形成的地球动力学背景.矿物岩石,24(3):65-71.
    Eby G N.1992.Chemical subdivision of the A-type granitoids:Petrologic and tectonic implications.Geology,20:641-644.
    Govindaraju K.1994.Compilation of working values and sample description for 383 geostandards.Geostandards Newsletter,18:1-158.
    Harris N B W,Pearce J A and Tindle A G.1986.Geochemical characteristics of collision zone magmatism.Geological Society,London,Special Publications,19(1):67-81.
    Hu Z C,Gao S,Liu Y S,Hu S H,Chen H H and Yuan H L.2008a.Signal enhancement in laser ablation ICP-MS by addition of nitrogen in the central channel gas.Journal of Analytical Atomic Spectrometry,23:1093-1101.
    Hu Z C,Liu Y S,Gao S,Hu S H,Dietikerc R and Günther D.2008b.A local aerosol extraction strategy for the determination of the aerosol composition in laser ablation inductively coupled plasma mass spectrometry.Journal of Analytical Atomic Spectrometry,23:1192-1203.
    Jiang Y H,Zhao P,Zhou Q,Liao S Y and Jin G D.2011.Petrogenesis and tectonic implications of Early Cretaceous S-and A-type granites in the northwest of the Gan-Hang rift,SE China.Lithos,121(1-4):55-73.
    Li X H.2000.Cretaceous magmatism and lithospheric extension in Southeast China.Journal of Asian Earth Sciences,18(3):293-305.
    Li X H,Li Z X,Li W X,Liu Y,Yuan C,Wei G J and Qi C S.2007.U-Pb zircon,geochemical and Sr-Nd-Hf isotopic constraints on age and origin of Jurassic I-and A-type granites from central Guangdong,SE China:A major igneous event in response to foundering of a subducted flat-slab?Lithos,96:186-204.
    Liu Y S,Gao S,Hu Z C,Gao C G,Zong K Q and Wang D B.2010a.Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating,Hf isotopes and trace elements in zircons of mantle xenoliths.Journal of Petrology,51(1-2):537-571.
    Liu Y S,Hu Z C,Gao S,Günther D,Xu J,Gao C G and Chen H H.2008a.In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard.Chemical Geology,257(1-2):34-43.
    Liu Y S,Hu Z H,Zong K Q,Gao C G,Gao S,Xu J and Chen H H.2010b.Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS.Chinese Science Bulletin,55(15):1535-1546.
    Liu Y S,Zong K Q,Kelemen P B and Gao S.2008b.Geochemistry and magmatic history of eclogites and ultramafic rocks from the Chinese continental scientific drill hole:Subduction and ultrahigh-pressure metamorphism of lower crustal cumulates.Chemical Geology,247(1-2):133-153.
    Maniar P D and Piccoli P M.1989.Tectonic discrimination of granitoids.Geological Society of America Bulletin,101:635-643.
    Mc Carthy T S and Hasty R A.1976.Trace element distribution patterns and their relationship to the crystallization of granitic melts.Geochimica et Cosmochimica Acta,40(11):1351-1358.
    Pearce J A,Harris N B W and Tindle A G.1984.Trace element discrimination diagrams for the tectonic interpretation of granitic rocks.Petrology,25(4):956-983.
    Rickwood P C.1989.Boundary lines within petrologic diagrams which use oxides of major and minor elements.Lithos,22(4):247-263.
    Sun S S and Mc Donough W F.1989.Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes//Saunders A D and Norry M J.Magmatism in the Ocean Basins.Geological Society Special Publication,42:313-345.
    Wang F Y,Ling M X,Ding X,Hu Y H,Zhou J B,Yang X Y,Liang H Y,Fan W M and Sun W D.2011.Mesozoic large magmatic events and mineralization in SE China:Oblique subduction of the Pacific plate.International Geology Review,53(5-6):704-726.
    Watson E B and Harrison T M.1983.Zircon saturation revisited:Temperature and composition effects in a variety of crustal magma types.Earth and Planetary Science Letters,64:295-304.
    Whalen J B,Currie K L and Chappell B W.1987.A-type granites:Geochemical characteristics,discrimination and petrogenesis.Contributions to Mineralogy and Petrology,95:407-419.
    Wolf M B and London D.1994.Apatite dissolution into peraluminous haplogranitic melts:An experimental study of solubilities and mechanism.Geochimica et Cosmochimica Acta,58:4127-4145.
    Wu F Y,Ji W Q,Sun D H,Yang Y H and Li X H.2012.Zircon U-Pb geochronology and Hf isotopic compositions of the Mesozoic granites in southern Anhui Province,China.Lithos,150:6-25.
    Zhou X M and Li W X.2000.Origin of Late Mesozoic igneous rocks in southeast China:Implications for lithosphere subduction and underplating of mafic magmas.Tectonophysics,326(3):269-287.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700