用户名: 密码: 验证码:
压电复合材料温度形变测试研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A testing method for temperature deformation of piezoelectric composites
  • 作者:白智奇 ; 王丽坤 ; 廖擎玮 ; 秦雷
  • 英文作者:BAI Zhiqi;WANG Likun;LIAO Qingwei;QIN Lei;Beijing Key Laboratory of Sensors,Beijing Information Science & Technology University;
  • 关键词:压电复合材料 ; 光纤光栅 ; 换能器 ; 温度形变
  • 英文关键词:piezoelectric composite;;fiber grating;;transducer;;temperature deformation
  • 中文刊名:BJGY
  • 英文刊名:Journal of Beijing Information Science & Technology University
  • 机构:北京信息科技大学北京市传感器重点实验室;
  • 出版日期:2019-06-15
  • 出版单位:北京信息科技大学学报(自然科学版)
  • 年:2019
  • 期:v.34;No.129
  • 基金:国家自然科学基金资助项目(11604363,61871043,61671068)
  • 语种:中文;
  • 页:BJGY201903008
  • 页数:5
  • CN:03
  • ISSN:11-5866/N
  • 分类号:42-45+50
摘要
压电复合材料的温度形变会对换能器和声呐系统的关键性能产生多种致命影响,但目前很少有针对其形变测试方法的研究。提出一种基于光纤光栅传感的方法测量压电复合材料温度形变,并对其相关性能参数进行测试。测试结果表明:压电复合材料长度方向的形变随温度增加而增加,长度方向相对变化率为1. 245 2;在30~75℃范围内,介电常数随温度增加而增加,其相对变化率为2. 657 4;在75~105℃范围内,介电常数仍随温度增加而增加,其相对变化率为1. 911 8。
        The deformation of piezoelectric composite has many deadly effects on transducers and sonar systems. However,there have been few studies on its deformation test methods. A novel fiber-grating-sensing method is developed for the study of temperature deformation of the piezoelectric composites. At the same time,the principle of temperature deformation test of piezoelectric composites is expounded and its related performance parameters are tested. With the increase of temperature,the deformations of the piezoelectric composite in length direction increases,and the increasing speeds( means slop of fitted line) is 1. 2452. After adding the deform information,the data for the dielectric constant are revised. The increasing speed of dielectric constant is 2. 6574 in the range of 25℃ ~ 75℃,and 1. 9118 in the range of 75℃ ~ 125℃.
引文
[1] Newnham R E,Skinner D P,Cross L E.Connectivity and piezoelectric-pyroelectric composite[J]. Materials Research Bulletin,1978,13(5):525-536.
    [2] Akdogan E K,Allahverdi M,Safari A.Piezoelectric composites for sensor and actuator applications[J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control,2005,52(5):746-775.
    [3]甘国友,严继康,孙加林,等.压电复合材料的现状与展望[J].功能材料,2000,31(5):456-459.
    [4]周福洪.水声换能器及基阵[M].北京:国防工业出版社,1984:120-135.
    [5]鲜晓军.1-3-2型压电复合材料换能器研究[D].西安:陕西师范大学,2016:46-55.
    [6]鲜晓军,林书玉,唐平.1-3-2型弧形压电陶瓷复合材料与换能器研究[J].南京大学学报,2015(6):1148-1152.
    [7]王丽坤,秦雷,段成丽,等.PZT/环氧树脂1-3-2型压电复合材料的制备及性能[J].功能材料与器件学报,2006,12(5):418-422.
    [8]莫喜平.水声换能器研究新进展[J].应用声学,2012,31(3):171-177.
    [9]解宝兴.镶嵌型宽波束换能器[J].应用声学,1997(2):24-27.
    [10]郑俊,赵红旺,朵兴茂.应力应变测试方法综述[J].汽车科技,2009(1):5-8.
    [11]饶云江,王义平,朱涛.光纤光栅原理及应用[M].北京:科学出版社,2006:96-107.
    [12]周智,李冀龙,欧进萍.埋入式光纤光栅界面应变传递机理与误差修正[J].哈尔滨工业大学学报,2006,38(1):49-55.
    [13]李红,祝连庆,刘锋,等.裸光纤光栅表贴结构应变传递分析与实验研究[J].仪器仪表学报,2014(8):1744-1750.
    [14]环氧树脂高温分子链松弛与玻璃化转变特性[J].物理学报,2016,65(7):296-300.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700