用户名: 密码: 验证码:
Modification of NiCoCrAlY with Pt: Part Ⅱ. Application in TBC with pure metastable tetragonal(t’) phase YSZ and thermal cycling behavior
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Modification of NiCoCrAlY with Pt: Part Ⅱ. Application in TBC with pure metastable tetragonal(t’) phase YSZ and thermal cycling behavior
  • 作者:Chuntang ; Yu ; He ; Liu ; Chengyang ; Jiang ; Zebin ; Bao ; Shenglong ; Zhu ; Fuhui ; Wang
  • 英文作者:Chuntang Yu;He Liu;Chengyang Jiang;Zebin Bao;Shenglong Zhu;Fuhui Wang;Corrosion and Protection Division, Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences;School of Materials Science and Engineering, University of Science and Technology of China;Corrosion and Protection Division, Shenyang National Laboratory for Materials Science, Northeastern University;
  • 英文关键词:Pt-modification;;NiCoCrAlY;;Thermal barrier coating(TBC);;Thermal cycling;;Thermally grown oxide(TGO)
  • 中文刊名:CLKJ
  • 英文刊名:材料科学技术(英文版)
  • 机构:Corrosion and Protection Division, Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences;School of Materials Science and Engineering, University of Science and Technology of China;Corrosion and Protection Division, Shenyang National Laboratory for Materials Science, Northeastern University;
  • 出版日期:2019-03-15
  • 出版单位:Journal of Materials Science & Technology
  • 年:2019
  • 期:v.35
  • 基金:financially supported by the National Natural Science Foundation of China (Grant Nos. 51,671,202 and 51,301,184);; the Defense Industrial Technology Development Program(Grant No. JCKY2016404C001);; sponsored by the “Liaoning BaiQianWan Talents” Program
  • 语种:英文;
  • 页:CLKJ201903017
  • 页数:10
  • CN:03
  • ISSN:21-1315/TG
  • 分类号:124-133
摘要
A thermal barrier coating system comprising Pt-modified NiCoCrAlY bond coating and nanostructured 4mol.% yttria stabilized zirconia(4YSZ, hereafter) top coat was fabricated on a second generation Ni-base superalloy. Thermal cycling behavior of NiCoCrAlY-4 YSZ thermal barrier coatings(TBCs) with and without Pt modification was evaluated in ambient air at 1100?C up to 1000 cycles, aiming to investigate the effect of Pt on formation of thermally grown oxide(TGO) and oxidation resistance. Results indicated that a dual layered TGO, which consisted of top(Ni,Co)(Cr,Al)_2O_4 spinel and underlying α-Al_2O_3, was formed at the NiCoCrAlY/4 YSZ interface with thickness of 8.4μm, accompanying with visible cracks at the interface. In contrast, a single-layer and adherent α-Al_2O_3 scale with thickness of 5.6μm was formed at the interface of Pt-modified NiCoCrAlY and 4 YSZ top coating. The modification of Pt on NiCoCrAlY favored the exclusive formation of α-Al_2O_3 and the reduction of TGO growth rate, and thus could effectively improve overall oxidation performance and extend service life of TBCs. Oxidation and degradation mechanisms of the TBCs with/without Pt-modification were discussed.
        A thermal barrier coating system comprising Pt-modified NiCoCrAlY bond coating and nanostructured 4mol.% yttria stabilized zirconia(4YSZ, hereafter) top coat was fabricated on a second generation Ni-base superalloy. Thermal cycling behavior of NiCoCrAlY-4 YSZ thermal barrier coatings(TBCs) with and without Pt modification was evaluated in ambient air at 1100?C up to 1000 cycles, aiming to investigate the effect of Pt on formation of thermally grown oxide(TGO) and oxidation resistance. Results indicated that a dual layered TGO, which consisted of top(Ni,Co)(Cr,Al)_2O_4 spinel and underlying α-Al_2O_3, was formed at the NiCoCrAlY/4 YSZ interface with thickness of 8.4μm, accompanying with visible cracks at the interface. In contrast, a single-layer and adherent α-Al_2O_3 scale with thickness of 5.6μm was formed at the interface of Pt-modified NiCoCrAlY and 4 YSZ top coating. The modification of Pt on NiCoCrAlY favored the exclusive formation of α-Al_2O_3 and the reduction of TGO growth rate, and thus could effectively improve overall oxidation performance and extend service life of TBCs. Oxidation and degradation mechanisms of the TBCs with/without Pt-modification were discussed.
引文
[1]N.P.Padture,M.Gell,E.H.Jordan,Science 296(2002)280-284.
    [2]B.Goswami,A.K.Ray,S.K.Sahay,High Temp,Mater.Process.23(2004)73-92.
    [3]R.Xu,X.L.Fan,T.J.Wang,Appl.Surf.Sci.370(2016)394-402.
    [4]A.G.Evans,D.R.Mumm,J.W.Hutchinson,G.H.Meier,F.S.Pettit,Prog.Mater.Sci.46(2001)505-553.
    [5]W.R.Chen,X.Wu,B.R.Marple,P.C.Patnaik,Surf.Coat.Technol.201(2006)1074-1079.
    [6]H.R.Yao,Z.B.Bao,M.L.Shen,S.L.Zhu,F.H.Wang,Appl.Surf.Sci.407(2017)485-494.
    [7]B.M.Warnes,Surf.Coat.Technol.163(2003)106-111.
    [8]S.J.Hou,S.L.Zhu,T.Zhang,F.H.Wang,Appl.Surf.Sci.324(2015)1-12.
    [9]F.H.Yuan,Z.G.Wang,C.Sun,S.J.Zhu,J.Mater.Sci.Technol.20(2004)85-88.
    [10]C.Ren,Y.D.He,D.R.Wang,Surf.Coat.Technol.206(2011)1461-1468.
    [11]C.Viazzi,J.P.Bonino,F.Ansart,Surf.Coat.Technol.201(2006)3889-3893.
    [12]K.Jiang,S.B.Liu,X.Wang,Ceram.Int.43(2017)12633-12640.
    [13]X.F.Zhang,K.Zhou,W.Xu,J.B.Song,C.M.Deng,M.Liu,J.Mater.Sci.Technol.31(2015)1006-1010.
    [14]X.Q.Niu,M.Xie,F.Zhou,R.D.Mu,X.W.Song,S.L.An,J.Mater.Sci.Technol.30(2014)381-386.
    [15]J.Karthikeyan,C.C.Berndt,J.Tikkanen,S.Reddy,Mater.Sci.Eng.A 238(1997)275-286.
    [16]C.B.Liu,Z.M.Zhang,X.L.Jiang,M.Liu,Z.H.Zhu,Trans.Nonferrous Met.Soc.China 19(2009)99-107.
    [17]R.Prescott,M.J.Graham,Oxid.Met.38(1992)233-254.
    [18]L.Y.Ni,C.Liu,H.Huang,C.G.Zhou,J.Therm.Spray Technol.20(2011)1133-1138.
    [19]E.A.G.Shilington,D.R.Clarke,Acta Mater.47(1999)1297-1305.
    [20]Y.N.Wu,G.Zhang,B.C.Zhang,Z.C.Feng,Y.Liang,F.J.Liu,J.Mater.Sci.Technol.17(2001)525-528.
    [21]M.Daroonparvar,J.Rare Earth 33(2015)983-994.
    [22]V.K.Tolpygo,D.R.Clarke,Surf.Coat.Technol.200(2005)1276-1281.
    [23]N.M.Yanar,G.H.Meier,F.S.Pettit,Scr.Mater.46(2002)325-330.
    [24]J.A.Haynes,M.J.Lance,B.A.Pint,I.G.Wright,Surf.Coat.Technol.146(2001)140-146.
    [25]K.G.Schmitt-Thomas,M.Hertter,Surf.Coat.Technol.120(1999)84-88.
    [26]K.Jiang,S.Liu,Y.Li,Y.F.Li,J.Am.Ceram.Soc.97(2014)990-995.
    [27]G.M.Kim,N.M.Yanar,E.N.Hewitt,F.S.Pettit,G.H.Meier,Scr.Mater.46(2002)489-495.
    [28]N.Birks,G.H.Meier,F.S.Pettit,Introduction to the High-temperature Oxidation of Metals,second ed.,Cambridge University Press,2006,pp.111-115.
    [29]G.W.Goward,Surf.Coat.Technol.108(1998)73-79.
    [30]M.J.Pomeroy,Mater.Des.26(2005)223-231.
    [31]D.Seo,K.Ogawa,Y.Suzuki,K.Ichimura,T.Shoji,S.Murata,Appl.Surf.Sci.255(2008)2581-2590.
    [32]P.Poza,P.S.Grant,Surf.Coat.Technol.201(2006)2887-2896.
    [33]J.Jiang,H.Zhao,X.Zhou,S.Tao,C.Ding,Appl.Surf.Sci.261(2012)422-430.
    [34]W.R.Chen,X.Wu,B.R.Marple,R.S.Lima,P.C.Patnaik,Surf.Coat.Technol.202(2008)3787-3796.
    [35]Q.Zhang,C.J.Li,C.X.Li,G.J.Yang,S.C.Lui,Surf.Coat.Technol.202(2008)3378-3384.
    [36]W.R.Chen,X.Wu,D.Dudzinski,P.C.Patnaik,Surf.Coat.Technol.200(2006)5863-5868.
    [37]J.P.Stacy,Y.Zhang,B.A.Pint,J.A.Haynes,B.T.Hazel,B.A.Nagaraj,Surf.Coat.Technol.202(2007)632-636.
    [38]M.S.Farrell,D.H.Boone,R.Streiff,Surf.Coat.Technol.32(1987)69-84.
    [39]D.K.Das,M.Roy,V.Singh,S.V.Joshi,Mater.Sci.Technol.15(1999)1199-1208.
    [40]J.G.Fountain,F.A.Golightly,F.H.Scott,G.C.Wood,Oxid.Met.10(1976)341-345.
    [41]R.Swadz′ba,Appl.Surf.Sci.445(2018)133-144.
    [42]E.J.Felten,F.S.Petit,Oxid.Met.10(1976)189-222.
    [43]I.M.Allam,H.C.Akuezue,D.P.Whittle,Oxid.Met.14(1980)517-530.
    [44]E.J.Felten,Oxid.Met.10(1976)23-28.
    [45]G.J.Tatlock,T.J.Hurd,Oxid.Met.22(1984)201-226.
    [46]G.Liu,Y.Niu,W.Wang,W.Wu,J.Chin.Soc.Corros.Prot.03(2000)511-519.
    [47]Y.Cadoret,D.Monceau,M.P.Bacos,P.Josso,V.Maurice,P.Marcus,Oxid.Met.56(2005)185-205.
    [48]K.A.Marino,E.A.Carter,Acta Mater.64(2008)3502-3510.
    [49]P.Marcus,I.Olefjord,J.Oudar,Corros.Sci.24(1984)269-278.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700