用户名: 密码: 验证码:
柴达木盆地北缘开屏沟纯橄岩中铬铁矿环带成因及其构造意义
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Genesis of the zonal texture of chromite from the Kaipinggou peridotite in the northern margin of Qaidam basin and its tectonic significance
  • 作者:蔡鹏捷 ; 郑有业 ; 陈鑫 ; 白杰 ; 许荣科
  • 英文作者:CAI Pengjie;ZHENG Youye;CHEN Xin;BAI Jie;XU Rongke;Institute of Geological Survey,China University of Geosciences;The Faculty of Earth Resources,China University of Geosciences;
  • 关键词:柴达木盆地北缘 ; 开屏沟 ; 铬铁矿 ; 环带
  • 英文关键词:northern Qaidam;;Kaipinggou;;chromite;;zonal texture
  • 中文刊名:DZXE
  • 英文刊名:Acta Geologica Sinica
  • 机构:中国地质大学(武汉)地质调查研究院;中国地质大学(武汉)资源学院;
  • 出版日期:2019-03-15
  • 出版单位:地质学报
  • 年:2019
  • 期:v.93
  • 基金:教育部长江学者和创新团队发展计划(编号IRT14R54);; 中国地质调查局项目(编号121201011000150004)资助成果
  • 语种:中文;
  • 页:DZXE201903010
  • 页数:14
  • CN:03
  • ISSN:11-1951/P
  • 分类号:141-154
摘要
开屏沟纯橄岩位于柴达木盆地北缘西段,岩石发生强烈的蛇纹石化,因此很难解析其性质和形成环境,本文通过对橄榄岩内发育的铬铁矿进行研究,探讨纯橄岩的性质及形成过程。岩相学观察和电子探针测试表明,铬铁矿具有明显核边结构,核部为铝铬铁矿,具有相对高Al_2O_3,低FeO~T、TiO_2、Cr~#特点,指示寄主原岩形成于俯冲带(SSZ)环境,寄主原岩为俯冲带橄揽岩。核部铝铬铁矿为岩浆型铬铁矿,通过计算得到其结晶温度平均为1372℃,结晶压力平均为2.96GPa,Δlgf_(O2)平均为-1.42,表明其形成于地幔软流圈。边部为高铁铬铁矿,具有低Al_2O_3,高FeO~T、TiO_2、Cr~#特征,指示铬铁矿边部受到蛇纹石化蚀变与富Fe流体的共同作用。综上,推测开屏沟纯橄岩原岩形成于SSZ环境,后期受到流体交代改造发生蛇纹石化,最终暴露地表。
        The Kaipinggou peridotite is located in the western part of the northern Qaidam Basin. The peridotite experienced strong serpentinization, and therefore, it is difficult to determine its property and formation environment. Furthermore, the local enrichment of Ni in the peridotite with Ni=0.15%~0.23% indicates that metallogenic mechanism is rather complicated. A detail analysis was performed on chromite from the peridotite to understand the properties of the peridotite and the mechanism of nickel mineralization. Petrographic observation and electron microprobe analyses show that chromite is characterized by a distinct core-rim structure with alumchromite at the core, and relatively high Al_2O_3, low FeO~T, TiO_2 and Cr~#. These features indicate that the host rock formed in the subduction zone(SSZ). Alumchromite at the core is magmatic in origin. Calculation shows that it has an average crystallization temperature of 1372℃, an average crystallization pressure of 2.96 GPa and an average Δlgf_(O2) of-1.42, indicating that it formed within the mantle asthenosphere. High-iron chromite around the rim is characterized by low Al_2O_3, high FeO~T, TiO_2 and Cr~#, indicating that the rim of the chromite was affected by serpentinization alteration and Fe-rich fluids. In summary, it can be speculated that the protolith of the Kaipinggou peridotite was formed in the subduction zone, subsequently transformed into serpentine due to fluid metasomatism and modification, and finally uplifted to the surface.
引文
Ballhaus C, Berry R F, Green D H. 1990. Oxygen fugacity controls in the earth's upper mantle. Nature, 348(6300): 437~440.
    Ballhaus C, Berry R F, Green D H. 1991. High-pressure experimental calibration of the olivine-orthopyroxene-spinel oxygen geobarometer: implications for the oxidation state of the upper mantle. Contributions to Mineralogy and Petrology, 107:27~40.
    Barnes S J. 2000. Chromite in komatiites, ii. modification during greenschist to mid-amphibolite facies metamorphism. Journal of Petrology, 41(3): 387~409.
    Barnes S J, Roeder P L. 2001. The range of spinel compositions in terrestrial mafic and ultramafic rocks. Journal of Petrology, 42(12):2279~2302.
    Cai Pengjie, Guo Xianzheng, Zheng Youye, Sun Shuhai, Liu Jia, Chen Xin, Yu Junzhen, Xu Rongke. 2018a. Theresearch situation and progress in magmatic Ni-Cu-PGE sulfide deposits. Geological Review, 64(4): 956~979 (in Chinese with English abstract).
    Cai Pengjie, Xu Rongke, Zheng Youye, Chen Xin, Liu Jia, Yu Junzhen. 2018b. From oceanic subduction to continental collision in North Qaidam: Evidence from Kaipinggou orogenic M-type peridotite. Earth Science, 43 (8): 2875~2892 (in Chinese with English abstract).
    Cerny P. 1968. Comments on serpentinization and related metasomatism. American Mineralogist, 53:1377~1385.
    Chen Renxu, Li Haiyong, Zheng Yongfei, Zhang Long, Gong Bing, Hu Zhaochu, Yang Yueheng. 2017. Crust-mantle interaction in a continental subduction channel: evidence from orogenic peridotites in North Qaidam, northern Tibet. Journal of Petrology, 58(2):191~226.
    Chen Xin, Zheng Youye, Xu Rongke, Cai Pengjie, Lin Chengui, Bai Jie, Sun Shuhai, Lu Lihui. 2018a. Mineralogical,trace element composition of rutile and genesis of eclogite-type rutile deposit from the Yuka terrane,North Qaidam UHPM belt. Acta Petrologica Sinica, 34(6): 1685~1703 (in Chinese with English abstract).
    Chen Xin, Zheng Youye, Xu Rongke, Cai Pengjie. 2018b. Petrology and geochemistry of high niobium eclogite in the North Qaidam orogen, western China: Implications for an eclogite facies metamorphosed island arc slice. Journal of Asian Earth Sciences, 164:380~397.
    Chen Xin, Xu Rongke, Schertl H P, Zheng Youye. 2018c. Eclogite-facies metamorphism in impure marble from North Qaidam orogenic belt: Geodynamic implications for early Paleozoic continental-arc collision. Lithos, 310~311: 201~224.
    Costa I R D, Barriga F J A S, Viti C, Mellini M, Wicks F J. 2008. Antigorite in deformed serpentinites from the Mid-Atlantic Ridge. European Journal of Mineralogy, 20(4): 563~572.
    Evans B W, Frost B R. 1975. Chrome-spinel in progressive metamorphism--a preliminary analysis. Geochimica et Cosmochimica Acta, 39(6):959~972.
    Fabriès J. 1979. Spinel-olivine geothermometry in peridotites from ultramafic complexes. Contributions to Mineralogy and Petrology, 69(4):329~336.
    Farahat E S. 2008. Chrome-spinels in serpentinites and talc carbonates of the El Ideid-El Sodmein district, central eastern desert, Egypt: their metamorphism and petrogenetic implications. Chemie der Erde-Geochemistry-Interdisciplinary Journal for Chemical Problems of the Geosciences and Geoecology, 68(2):193~205.
    Feng Huibin, Meng Fancong, Li Shengrong, Jia Lihui. 2015a. The genesis of zonal texture of chromites from the Qingshuiquan serpentinite in East Kunlun Mountains. Geology in China, 42(3): 785~802 (in Chinese with English abstract).
    Feng Huibin, Meng Fancong, Li Shengrong, Jia Lihui. 2015b. Characteristics and tectonic significance of chromites from Qingshuiquan serpentinite of East Kunlun, Northwest China. Acta Petrologica Sinica, 31(8) : 2129~2144 (in Chinese with English abstract).
    Grieco G, Diella V, Chaplygina N L. 2007. Platinum group elements zoning and mineralogy of chromitites from the cumulate sequence of the Nurali massif (southern Urals, Russia). Ore Geology Reviews, 30(3):257~276.
    Gahlan H A, Arai S, Ahmed A H, Ishida Y, Abdel-Aziz Y M, Rahimi A. 2006. Origin of magnetite veins in serpentinite from the late Proterozoic Bou-Azzer ophiolite, Anti-Atlas, Morocco: an implication for mobility of iron during serpentinization. Journal of African Earth Sciences, 46(4): 318~330.
    Hill R, Roeder P. 1974. The crystallization of spinel from basaltic liquid as a function of oxygen fugacity. Journal of Geology, 82(6):709~729.
    Irvine T N. 1977. Origin of chromitite layers in the Muskox intrusion and other stratiform intrusions: A new interpretation. Geology, 5(5): 273.
    Ismail S A. 2009. Chemistry of accessory chromian spinel in serpentinites from the Penjwen ophiolite rocks, Zagros thrust zone, northeastern Iraq. Journal of Kirkuk University-Scientific Studies, 4(2):1~21.
    Jan M Q, Windley B F. 1990. Chromian spinel-silicate chemistry in ultramafic rocks of the Jijal complex, northwest Pakistan. Journal of Petrology, 31(3):667~715.
    Kamenetsky V S, Crawford A J, Meffre S. 2001. Factors controlling chemistry of magmatic spinel: an empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks. Journal of Petrology, 42(4):655~671.
    Khalil K I, El-Makky A M. 2010. Alteration mechanisms of chromian-spinel during serpentinization at Wadi Sifein area, eastern Desert, Egypt. Resource Geology, 59(2):194~211.
    Li Haiyong, Chen Renxu, Zheng Yongfei, Hu Zhaochu. 2016. The crust-mantle interaction in continental subduction channels: zircon evidence from orogenic peridotite in the Sulu orogen. Journal of Geophysical Research Solid Earth, 121(3): 688~712.
    Li Chusi, Ripley E M, Naldrett A J. 2009. A new genetic model for the giant Ni-Cu-PGE sulfide deposits associated with the Siberian flood basalts. Economic Geology, 104(2):291~301.
    Li Ruihua, Sun Fengyue, Li Liang, Bai Yina, Wang Fei, Jiang Hefang, Yu Lu. 2017. U-Pb dating, geochemistry, and Hf isotopic compositions of diorite from the Niubiziliang Ni-(Cu) deposit in Qinghai Province. Acta Geologica Sinica, 91(10):2273~2284 (in Chinese with English abstract).
    Li Xuping, Zhang Lifei, Wilde S A, Song Bao, Liu Xiaoming. 2010. Zircons from rodingite in the western Tianshan serpentinite complex: mineral chemistry and U-Pb ages define nature and timing of rodingitization. Lithos, 118(1-2):17~34.
    Malvoisin B, Carlut J, Brunet F. 2012. Serpentinization of oceanic peridotite: 1. A high sensitivity method to monitor magnetite production in hydrothermal experiments. Journal of Geophysical Research, 117: B01104.
    Meng Fancong, Zhang Jianxin, Yang Jingsui. 2005. Subducted continental arc: geochemical and isotopic evidence of gneisses in the North Qaidam. Acta Geologica Sinica, 79(1):46~55 (in Chinese with English abstract).
    Merlini A, Grieco G, Diella V. 2009. Ferritchromite and chromian-chlorite formation in mélange-hosted Kalkan chromitite (southern Urals, Russia). American Mineralogist, 94(10):1459~1467.
    Mukherjee R, Mondal S K, Rosing M T, Frei R. 2010. Compositional variations in the Mesoarchean chromites of the Nuggihalli schist belt, western Dharwar craton (India): potential parental melts and implications for tectonic setting. Journal of the Geological Society of India, 160(6): 865~885.
    O'Neill H S C. 1981. The transition between spinel lherzolite and garnet lherzolite, and its use as a geobarometer. Contributions to Mineralogy & Petrology, 77(2):185~194.
    Page P, Barnes S J. 2009. Using trace elements in chromites to constrain the origin of podiform chromitites in the Thetford mines ophiolite, Quebec, Canada. Economic Geology, 104:997~1018.
    Qi Changmou, Rang Mei, Jia Keshi, Fang Guochuan. 1982. Geochemistry of the alteration process of chromite. Journal of Jilin University, (4):3~14 (in Chinese with English abstract).
    Qian Bing, Zhang Zhaowei, Liu Huiwen, Shao Ji, Zhang Zhibing. 2015. Characteristics and metallogenic potential of magnesium-urtramagnesite rock from Niubizilian-Lenhu, northern Qaidam. Acta Geologica Sinica, 89(z1): 171~172 (in Chinese).
    Robinson P T, Trumbull R B, Schmitt A, Yang J S, Li J W, Zhou M F, Erzinger J, Dare S, Xiong F H. 2015. The origin and significance of crustal minerals in ophiolitic chromitites and peridotites. Gondwana Research, 27(2): 486~506.
    Shao Pengcheng, Chen Shiyue, Sun Jiaopeng, Ma Shuai, Liu Jin, Wang Feng. 2018. SHRIMP zircon U-Pb dating and petro-geochemistry of Aolaoshan gabbro-diorite in the western north margin of Qaidam basin. Acta Geologica Sinica, 92(9): 1888~1903 (in Chinese with English abstract).
    Shi Haiyan, Miao Weiliang, Zhang Xiying, Li Wenxia, Tang Qiliang, Li Yongshou. 2018. Geochemical characteristics and ore-forming material source of celestite deposits in Dafeng Mountain, northwestern Qaidam basin. Acta Geologica Sinica, 92(8): 1733~1752 (in Chinese with English abstract).
    Shi Rendeng, Yang Jingsui, Wu Cailai, Iizuka T, Hirata T. 2006. Island arc volcanic rocks in the North Qaidam UHP belt, northern Tibet Plateau: evidence for oceanvcontinent subduction preceding continent-continent subduction. Journal of Asian Earth Sciences, 28(2-3): 151~159.
    Song Shuguang, Zhang Lifei, Niu Yaoling, Su Li, Jian Ping, Liu Dunyi. 2005. Geochronology of diamond-bearing zircons from garnet peridotite in the North Qaidam UHPM belt, northern Tibetan Plateau: A record of complex histories from oceanic lithosphere subduction to continental collision. Earth and Planetary Science Letters, 234(1-2): 99~118.
    Song Shuguang, Su Li, Niu Yaoling, Zhang Guibin. 2009. Two types of peridotite in North Qaidam UHPM belt and their tectonic implications for oceanic and continental subduction: a review. Journal of Asian Earth Sciences, 35(3): 285~297.
    Song Shuguang, Niu Yaoling, Su Li, Zhang Cong, Zhang Lifei. 2014. Continental orogenesis from ocean subduction, continent collision/subduction, to orogen collapse, and orogen recycling: the example of the North Qaidam UHPM belt, NW China. Earth-Science Reviews, 129:59~84.
    Su Bin, Chen Yi, Guo Shun, Liu Jingbo. 2016. Origins of orogenic dunites: petrology, geochemistry, and implications. Gondwana Research, 29(1): 41~59.
    Sun Jiaopeng, Chen Shiyue, Ma Yinsheng, Peng Yuan, Shao Pengcheng, Ma Shuai, Dai Kun, Zheng Ce. 2016. Early Ordovician continental arc collision and retroarc foreland basin on the northern margin of Qaidam basin: Geochemical evidence from clastic rocks. Acta Geologica Sinica, 90(1): 80~92(in Chinese with English abstract).
    Urvrbn G C. 1974. Alteration of chromite during serpentinization the Pennsylvania-Maryland district. American Mineralogist, 59(1):1236~1241.
    Wang Yusong, Niu Manlan, Li Xiucai, Wu Qi, Han Yu, Zhao Qiqi, Da Liangchao. 2017. LA-ICP-MS zircon U-Pb dating and petrogenesis of the quartz diorites from the Guokeshan area in the northern margin of the Qaidam basin. Acta Geologica Sinica, 91(1): 94~110 (in Chinese with English abstract).
    Wu Cailai, Yang Jingsui, Robinson P T, Wooden J L, Mazdab F K, Gao Yunhong, Wu Suoping, Chen Qilong. 2009. Geochemistry, age and tectonic significance of granitic rocks in North Altun, Northwest China. Lithos, 113(3-4): 423~436.
    Wu Di, Wu Cailai, Lei Min, Li Tiexiao. 2017. Geochemical characteristics and genesis of the granite from Wulan area, North Qaidam. Geological Review, 63(3): 597~615 (in Chinese with English abstract).
    Yang Jingsui, Xu Zhiqin, Song Shuguang, Zhang Jianxin, Wu Cailai, Shi Rendeng, Li Haibing, Brunel M. 2001. Discovery of coesite in the North Qaidam Early Palaeozoic ultrahigh pressure (UHP) metamorphic belt, NW China. Comptes Rendus de l'Academie des Sciences Series IIA Earth and Planetary Science, 333(11): 719~724.
    Yu Shengyao, Zhang Jianxin, Sun Deyou, Real P G D, Li Yunshuai, Zhao Xilin, Hou Kejun. 2015. Petrology, geochemistry, zircon U-Pb dating and Lu-Hf isotope of granitic leucosomes within felsic gneiss from the North Qaidam UHP terrane: constraints on the timing and nature of partial melting. Lithos, 218-219:1~21.
    Zaccarini F, Garuti G, Proenza J A, Campos L, Thalhammer O A R, Aiglsperger T, Lewis J. 2011. Chromite and platinum group elements mineralization in the Santa Elena ultramafic nappe (Costa Rica): geodynamic implications. Geologica Acta, 9(3-4):407~423.
    Zhang Gguibin, Zhang Lifei, Song Shuguang, Niu Yaoling. 2009. UHP metamorphic evolution and SHRIMP geochronology of a coesite-bearing meta-ophiolitic gabbro in the North Qaidam, NW China. Journal of Asian Earth Sciences, 35(3-4): 310~322.
    Zhang Jianxin, Yu Shenyao, Li Yunshuai, Yu Xinxin, Lin Yihui, Mao Xiaohong. 2015. Subduction, accretion and closure of Proto-Tethyan Ocean: Early Paleozoic accretion /collision orogeny in the Altun-Qilian-North Qaidam orogenic system. Acta Petrologica Sinica, 31 (12): 3531~3554 (in Chinese with English abstract).
    Zhang Long, Chen Renxu, Zheng Yongfei, Li Wancai, Hu Zhaochu, Yang Yueheg, Tang Haolan. 2016. The tectonic transition from oceanic subduction to continental subduction: zirconological constraints from two types of eclogites in the North Qaidam orogen, northern Tibet. Lithos, 244:122~139.
    Zhang Long, Chen Renxu, Zheng Yongfei, Hu Zhaochu, Xu Lijuan. 2017. Whole-rock and zircon geochemical distinction between oceanic-and continental-type eclogites in the North Qaidam orogen, northern Tibet. Gondwana Research, 44:67~88.
    Zhang Weibin, Zhang Dongyang, Zhang Zhaochong, Huang He, Zhao Li. 2011. Mineralogy of chromites in Mandaleke ophiolite of South Tianshan Mountains and its geological implications. Acta Petrologica et Mineralogica, 30(2): 243~258 (in Chinese with English abstract).
    Zhang Zhaowei, Li Wenyuan, Qian Bing, Wang Yalei. 2015. Metallogenic characteristics and formation background of mafic-ultramafic rock mass around the Qaidam basin. Acta Geologica Sinica, 89(z1): 248~250 (in Chinese).
    Zhang Zhaowei, Wang Yalei, Qian Bing, Li Wenyuan. 2017. Zircon SHRIMP U-Pb age of the Binggounan magmatic Ni-Cu deposit in East Kunlun Mountains and its tectonic implications. Acta Geologica Sinica,91(4):724~735 (in Chinese with English abstract).
    Zheng Yongfei. 2012. Metamorphic chemical geodynamics in continental subduction zones.Chemical Geology,328(18):5~48.
    Zhu Xiaohui, Chen Ddanlin, Liu Liang, Zhao Jiao, Zhang Le. 2014. Geochronology, geochemistry and significance of the Early Paleozoic back-arc type ophiolite in Lvliangshan area, North Qaidam. Acta Petrologica Sinica, 30(3): 822~834 (in Chinese with English abstract).
    Zhu Xiaohui, Chen Danlin, Wang Chao, Wang Hong, LiuLiang. 2015. The initiation development and termination of the Neoproterozoic-Early Paleozoic ocean in the northern margin of Qaidam basin. Acta Geologica Sinica, 89(2):234~251(in Chinese with English abstract).
    参考文献蔡鹏捷,国显正, 郑有业, 孙述海, 刘嘉, 陈鑫, 俞军真, 许荣科. 2018a. 岩浆型Ni-Cu-PGE硫化物矿床研究现状及进展. 地质论评, 64(4):956~979.
    蔡鹏捷,许荣科,郑有业,陈鑫,刘嘉,俞军真. 2018b. 柴北缘从大洋俯冲到陆陆碰撞:来自开屏沟造山带M型橄榄岩的证据. 地球科学,43(8):2875~2892.
    陈鑫,郑有业,许荣科,蔡鹏捷,林成贵,白杰,孙述海,鲁立辉. 2018. 柴北缘鱼卡榴辉岩型金红石矿床金红石矿物学、元素地球化学及成因. 岩石学报,34(6): 1685~1703.
    李睿华,孙丰月,李良,白宜娜,王飞,姜和芳,禹禄. 2017. 青海牛鼻子梁镍矿勘查区闪长岩U-Pb年代学、地球化学及Hf同位素研究.地质学报, 91(10):2273~2284.
    冯惠彬, 孟繁聪, 李胜荣,贾丽辉.2015a.东昆仑清水泉蛇纹岩中铬铁矿环带成因.中国地质, 42(3):785~802.
    冯惠彬, 孟繁聪, 李胜荣,贾丽辉. 2015b. 东昆仑清水泉蛇纹岩中铬铁矿特征及其构造意义. 岩石学报, 31(8):2129~2144.
    孟繁聪,张建新,杨经绥.2005.俯冲的大陆岛弧——柴北缘片麻岩的地球化学和同位素证据.地质学报,79(1):46~55.
    钱兵,张照伟,刘会文,邵继,张志炳.2015.柴达木西北缘牛鼻子梁—盐场北山地区镁铁-超镁铁质岩体特征及成矿潜力.地质学报,89(z1):171~172.
    戚长谋, 稂玫, 贾克实,范国传. 1982. 铬铁矿次变的地球化学. 长春地质学院学报,(4): 3~14.
    邵鹏程,陈世悦,孙娇鹏,马帅,刘金,汪峰. 2018. 柴达木盆地北缘西段嗷唠山辉长闪长岩锆石SHRIMP U-Pb定年及岩石地球化学特征. 地质学报,92(9):1888~1903.
    石海岩,苗卫良,张西营,李雯霞,唐启亮,李永寿. 2018.柴达木盆地西北部大风山天青石矿床地球化学特征及成矿物源属性探讨. 地质学报,92(8): 1733~1752.
    孙娇鹏,陈世悦,马寅生,彭渊,邵鹏程,马帅,代昆,郑策. 2016. 柴达木盆地北缘早奥陶世陆弧碰撞及弧后前陆盆地——来自碎屑岩地球化学的证据. 地质学报,90(1): 80~92.
    王玉松,牛漫兰,李秀财,吴齐,韩雨,赵齐齐,笪梁超. 2017. 柴达木盆地北缘果可山石英闪长岩LA-ICP-MS锆石U-Pb定年及其成因. 地质学报,91(1): 94~110.
    吴迪,吴才来,雷敏,李天啸. 2017. 柴达木北缘乌兰地区花岗岩岩石地球化学特征及成因. 地质论评,63(3): 597~615.
    张建新,于胜尧,李云帅,喻星星,林宜慧,毛小红, 2015. 原特提斯洋的俯冲、增生及闭合:阿尔金-祁连-柴北缘造山系早古生代增生/碰撞造山作用. 岩石学报, 31(12): 3531~3554.
    张炜斌, 张东阳, 张招崇, 黄河,赵莉. 2011. 南天山满大勒克蛇绿岩铬铁矿矿物学特征及其意义. 岩石矿物学杂志, 30(2):243~258.
    张照伟,李文渊,钱兵,王亚磊.2015.柴达木盆地周缘镁铁-超镁铁质岩体成矿特点与形成背景探讨.地质学报,89(z1):248~250.
    张照伟,王亚磊,钱兵,李文渊.2017.东昆仑冰沟南铜镍矿锆石SHRIMP U Pb年龄及构造意义.地质学报,91(4):724~735.
    朱小辉, 陈丹玲, 刘良,等, 2014. 柴北缘绿梁山地区早古生代弧后盆地型蛇绿岩的年代学、地球化学及大地构造意义. 岩石学报, 30(3):822~834.
    朱小辉,陈丹玲,王超,王红,刘良.2015.柴达木盆地北缘新元古代—早古生代大洋的形成、发展和消亡.地质学报,89(2):234~251.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700