用户名: 密码: 验证码:
温度对微食物网生物代谢的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of temperature on the biological metabolism of microbial food web
  • 作者:张武昌 ; 赵苑 ; 董逸 ; 赵丽 ; 李海波 ; 肖天
  • 英文作者:ZHANG Wu-chang;ZHAO Yuan;DONG Yi;ZHAO Li;LI Hai-bo;XIAO Tian;Key Laboratory of Marine Ecology and Environmental Sciences,Institute of Oceanology,Chinese Academy of Sciences;Laboratory for Marine Ecology and Environmental Science,Qingdao National Laboratory for Marine Science and Technology;Center for Ocean Mega-Science,Chinese Academy of Sciences;
  • 关键词:微食物网 ; 代谢 ; 生态学代谢理论 ; 低温 ; 全球变暖
  • 英文关键词:microbial food web;;metabolism;;metabolic theory of ecology;;low temperature;;global warming
  • 中文刊名:HYKX
  • 英文刊名:Marine Sciences
  • 机构:中国科学院海洋研究所海洋生态与环境科学重点实验室;青岛海洋科学与技术国家实验室海洋生态与环境科学功能实验室;中国科学院海洋大科学研究中心;
  • 出版日期:2018-10-15
  • 出版单位:海洋科学
  • 年:2018
  • 期:v.42;No.352
  • 基金:国家自然科学基金(41576164);; 国家重点研发计划课题(2017YFA0603204);; 国家自然科学基金-山东省联合基金(U1606404)~~
  • 语种:中文;
  • 页:HYKX201810014
  • 页数:9
  • CN:10
  • ISSN:37-1151/P
  • 分类号:139-147
摘要
生态学代谢理论(metabolic theory of ecology, MTE)指的是生物的代谢速度随着温度的升高而增加,随生物个体大小(即生物量)的增加而异速增长。根据MTE理论可预测异养过程与自养过程对温度的反应不同,低温对异养代谢的抑制要明显;而随着温度升高,异养代谢升高的速度比自养代谢升高的速度要快。MTE理论可以对海洋浮游微食物网生物的代谢研究进行理论指导,用于解释一些低温造成的海洋浮游生态学现象,以及预测全球变暖的影响。多年来人们一直根据MTE理论开展理论分析和实验检验,发现低温会抑制细菌和微型浮游动物的生长,并可以降低微型浮游动物的摄食率。春季高纬度海区的海水温度会抑制细菌的生长,而浮游植物则几乎不受影响,从而造成春季水华发生。温度和底物浓度是冷海(水温≤4℃)细菌生长率低的原因,但在永冷海(周年温度≤4℃的海区,包括极地海区和深海的大部分)中究竟是低温还是底物浓度限制了细菌的生长率仍被争论。全球变暖的预测认为本世纪海洋表层温度会升高2~6℃。根据MTE理论,温度升高对自养和异养过程的影响不同,围隔实验证明全球变暖将导致水华与细菌、水华与微型浮游动物的时滞变小,促进微型浮游动物对细菌和浮游植物的摄食,改变有机物质自养生产和异养消耗之间的平衡,使更多的物质和能量进入呼吸作用,使得生态系统变得更加异养。但在温度升高对海洋细菌生长效率和细菌生物量变化的研究方面,MTE理论还有一定的局限性,需要进一步的理论分析和实验检验。
        The metabolic theory of ecology(MTE) refers to the increase in the metabolic rate of a living being with increases in temperature and individual size(i.e., biomass). According to MTE, the responses of the heterotrophic and autotrophic processes to temperature are different. There could be obvious inhibition of heterotrophic metabolism due to low temperature. With increasing temperature, the increase in heterotrophic metabolism is faster than autotrophic processes. MTE can provide theoretical guidance for studying the metabolism of the marine microbial food web to explain the phenomenon of marine planktonic ecology caused due to low temperature, and to predict the impact of global warming. Scientists have been conducting theoretical analysis and experimental tests based on MTE, and found that low temperature could inhibit the growth of bacteria and microzooplankton, as well as reduce the feeding rate of microzooplankton. In spring, the temperature in the high latitude sea area inhibits the growth of bacteria, whereas the phytoplankton remains almost unaffected, resulting in spring blooms. Temperature and substrate concentration are the reasons for the low bacterial growth rate in the cold sea(water temperature ≤4℃).However, the question of whether the low temperature or the low substrate concentration limits the growth rate of bacteria in the permanently cold sea(annual temperature ≤4℃, including the polar sea and most of the deep sea)has still been debated. Global warming predictions suggests that the ocean surface temperature will increase by 2~6℃ by the end of this century. Enclosure experiments have confirmed that global warming will lead to shorter time lag between phytoplankton bloom and bacteria and microzooplankton maximum, stimulating the feeding of microzooplankton on bacteria and phytoplankton. Global warming will change the balance between autotrophic production and heterotrophic consumption of organic matter, which allows the entry of more substances and energy into cellular respiration, resulting in a more heterotrophic ecosystem. MTE has some limitations in the investigation of the growth of marine bacteria and the changes in bacterial biomass with increasing temperature, which will require further theoretical analysis and experimental testing.
引文
[1]Brown J H,Gillooly J F,Allen A P,et al.Toward a metabolic theory of ecology[J].Ecology,2004,85(7):1771-1789.
    [2]Brody S,Procter R C,Ashworth U S.Growth and development with special reference to domestic animals XXXIV,Basal metabolism,endogenous nitrogen,creatinine and neutral sulphur excretions as functions of body weight[J].University of Missouri Agricultural Experimental Station Residential Bulletin,1934,220:1-40.
    [3]Kleiber M.Body size and metabolism[J].Hilgardia,1932,6:315-353.
    [4]Kleiber M.Body size and metabolic rate[J].Physiological Reviews,1947,27(4):511-541.
    [5]Boltzmann L.Further Studies on the thermal equilibrium of gas molecules[J].Kinetic Theory,1966:88-175
    [6]Gillooly J F,Brown J H,West G B,et al.Effects of size and temperature on metabolic rate[J].Science,2001,293(5538):2248-2251.
    [7]Allen A P,Gillooly J F,Brown J H.Linking the global carbon cycle to individual metabolism[J].Functional Ecology,2005,19(2):202-213.
    [8]López-Urrutia A,San Martin E,Harris R P,et al.Scaling the metabolic balance of the oceans[J].Proceedings of the National Academy of Sciences of the United States of America,2006,103(23):8739-8744.
    [9]Rose J M,Caron D A.Does low temperature constrain the growth rates of heterotrophic protists?Evidence and implications for algal blooms in cold waters[J].Limnology and Oceanography,2007,52(2):886-895.
    [10]López-Urrutiaá.Comment:The metabolic theory of ecology and algal bloom formation[J].Limnology and Oceanography,2008,53(5):2046-2047.
    [11]Regaudie-De-Gioux A,Duarte C M.Temperature dependence of planktonic metabolism in the ocean[J].Global Biogeochemical Cycles,2012,26(1):GB1015.
    [12]Pomeroy L R,Wiebe W J.Energetics of microbial food webs[J].Hydrobiologia,1988,159(1):7-18.
    [13]Sorokin J I.On the role of bacteria in the productivity of tropical oceanic waters[J].Internationale Revue der gesamten Hydrobiologie und Hydrographie,1971,56(1):1-48.
    [14]Fedosov M V,Ermachenko I A.On primary production in the Northwest Atlantic[J].Special Publication of the International Commission for the Northwest Atlantic Fisheries,1969,7:87-93.
    [15]Legrand C,Fridolfsson E,Bertos-Fortis M,et al.Interannual variability of phyto-bacterioplankton biomass and production in coastal and offshore waters of the Baltic Sea[J].Ambio,2015,44(Suppl 3):427-438.
    [16]Pomeroy L R,Deibel D.Temperature regulation of bacterial activity during the spring bloom in newfoundland coastal waters[J].Science,1986,233(4761):359-361.
    [17]Pomeroy L,Wiebe W.Energy sources for microbial food webs[J].Marine microbial food webs,1993,7(1):101-118.
    [18]Pomeroy L R,Macko S A,Ostrom P H,et al.The microbial food web in Arctic seawater-concentration of dissolved free amino-acids and bacterial abundance and activity in the Arctic-Ocean and in resolute passage[J]Marine Ecology Progress Series,1990,61(1-2):31-40.
    [19]Pomeroy L R,Wiebe W J,Deibel D,et al.Bacterial responses to temperature and substrate concentration during the Newfoundland spring bloom[J].Marine Ecology Progress Series,1991,75:143-159.
    [20]Rivkin R B,Anderson M R,Lajzerowicz C.Microbial processes in cold oceans.I.Relationship between temperature and bacterial growth rate[J].Aquatic Microbial Ecology,1996,10:243-254.
    [21]Pomeroy L R,Wiebe W J.Temperature and substrates as interactive limiting factors for marine heterotrophic bacteria[J].Aquatic Microbial Ecology,2001,23(2):187-204.
    [22]Fuhrman J A,Azam F.Bacterioplankton secondary production estimates for coastal waters of British Columbia,Antarctica,and California[J].Applied and environmental microbiology,1980,39(6):1085-1095.
    [23]Hanson R,Lowery H,Shafer D,et al.Microbes in Antarctic waters of the Drake Passage:vertical patterns of substrate uptake,productivity and biomass in January 1980[J].Polar Biology,1983,2(3):179-188.
    [24]Hodson R E,Azam F,Carlucci A,et al.Microbial uptake of dissolved organic matter in McMurdo Sound,Antarctica[J].Marine Biology,1981,61(2-3):89-94.
    [25]Azam F,Smith D C,Hollibaugh J T.The role of the microbial loop in Antarctic pelagic ecosystems[J].Polar Research,1991,10(1):239-244.
    [26]Kirchman D L,Moran X A,Ducklow H.Microbial growth in the polar oceans-role of temperature and potential impact of climate change[J].Nature Reviews Microbiology,2009,7(6):451-459.
    [27]Arrieta J M,Mayol E,Hansman R L,et al.Dilution limits dissolved organic carbon utilization in the deep ocean[J].Science,2015,348(6232):331-333.
    [28]Jiao N,Legendre L,Robinson C,et al.Comment on“Dilution limits dissolved organic carbon utilization in the deep ocean”[J].Science,2015,350(6267):1483-1483.
    [29]Rose J M,Vora N M,Countway P D,et al.Effects of temperature on growth rate and gross growth efficiency of an Antarctic bacterivorous protist[J].The ISMEjournal,2009,3(2):252-260.
    [30]FranzèG,Lavrentyev P J.Microzooplankton growth rates examined across a temperature gradient in the Barents Sea[J].PLoS One,2014,9(1):e86429.
    [31]Verity P G,Wassmann P,Frischer M E,et al.Grazing of phytoplankton by microzooplankton in the Barents Sea during early summer[J].Journal of Marine Systems,2002,38(1-2):109-123.
    [32]Sherr E B,Sherr B F,Hartz A J.Microzooplankton grazing impact in the Western Arctic Ocean[J].Deep Sea Research Part II:Topical Studies in Oceanography,2009,56(17):1264-1273.
    [33]Calbet A,Saiz E,Almeda R,et al.Low microzooplankton grazing rates in the Arctic Ocean during a Phaeocystis pouchetii bloom(Summer 2007):fact or artifact of the dilution technique?[J].Journal of Plankton Research,2011,33(5):687-701.
    [34]Landry M R,Brown S L,Selph K E,et al.Initiation of the spring phytoplankton increase in the Antarctic Polar Front Zone at 170°W[J].Journal of Geophysical Research:Oceans,2001,106(C7):13903-13915.
    [35]Garzio L M,Steinberg D K,Erickson M,et al.Microzooplankton grazing along the Western Antarctic Peninsula[J].Aquatic Microbial Ecology,2013,70(3):215-232.
    [36]Pearce I,Davidson A T,Thomson P G,et al.Marine microbial ecology off East Antarctica(30°~80°E):Rates of bacterial and phytoplankton growth and grazing by heterotrophic protists[J].Deep Sea Research Part II:Topical Studies in Oceanography,2010,57(9-10):849-862.
    [37]Pearce I,Davidson A T,Thomson P G,et al.Marine microbial ecology in the sub-Antarctic Zone:Rates of bacterial and phytoplankton growth and grazing by heterotrophic protists[J].Deep Sea Research Part II:Topical Studies in Oceanography,2011,58(21-22):2248-2259.
    [38]Safi K A,Brian Griffiths F,Hall J A.Microzooplankton composition,biomass and grazing rates along the WOCESR3 line between Tasmania and Antarctica[J].Deep Sea Research Part I:Oceanographic Research Papers,2007,54(7):1025-1041.
    [39]Yang E J,Jiang Y,Lee S.Microzooplankton herbivory and community structure in the Amundsen Sea,Antarctica[J].Deep Sea Research Part II:Topical Studies in Oceanography,2016,123:58-68.
    [40]Calbet A,Landry M R.Phytoplankton growth,microzooplankton grazing,and carbon cycling in marine systems[J].Limnology and Oceanography,2004,49(1):51-57.
    [41]Caron D A,Dennett M R,Lonsdale D J,et al.Microzooplankton herbivory in the Ross Sea,Antarctica[J].Deep Sea Research Part II:Topical Studies in Oceanography,2000,47(15-16):3249-3272.
    [42]Landry M R,Calbet A.Microzooplankton production in the oceans[J].ICES Journal of Marine Science,2004,61(4):501-507.
    [43]Rose J M,Fitzpatrick E,Wang A,et al.Low temperature constrains growth rates but not short-term ingestion rates of Antarctic ciliates[J].Polar Biology,2013,36(5):645-659.
    [44]Stoecker D K,Nejstgaard J C,Madhusoodhanan R,et al.Underestimation of microzooplankton grazing in dilution experiments due to inhibition of phytoplankton growth[J].Limnology and Oceanography,2015,60(4):1426-1438.
    [45]Vaquer-Sunyer R,Duarte C M,Santiago R,et al.Experimental evaluation of planktonic respiration response to warming in the European Arctic Sector[J].Polar Biology,2010,33(12):1661-1671.
    [46]Bird D F,Karl D M.Uncoupling of bacteria and phytoplankton during the austral spring bloom in Gerlache Strait,Antarctic Peninsula[J].Aquatic Microbial Ecology,1999,19(1):13-27.
    [47]Lignell R.Fate of a phytoplankton spring bloom:sedimentation and carbon flow in the planktonic food web in the northern Baltic[J].Marine Ecology Progress Series,1993,94:239-252.
    [48]Sommer U,Adrian R,Bauer B,et al.The response of temperate aquatic ecosystems to global warming:novel insights from a multidisciplinary project[J].Marine Biology,2012,159(11):2367-2377.
    [49]Hoppe H-G,Breithaupt P,Walther K,et al.Climate warming in winter affects the coupling between phytoplankton and bacteria during the spring bloom:a mesocosm study[J].Aquatic Microbial Ecology,2008,51:105-115.
    [50]Aberle N,Bauer B,Lewandowska A,et al.Warming induces shifts in microzooplankton phenology and reduces time-lags between phytoplankton and protozoan production[J].Marine Biology,2012,159(11):2441-2453.
    [51]Aberle N,Malzahn A M,Lewandowska A M,et al.Some like it hot:the protozooplankton-copepod link in a warming ocean[J].Marine Ecology Progress Series,2015,519:103-113.
    [52]Calbet A,Sazhin A F,Nejstgaard J C,et al.Future climate scenarios for a coastal productive planktonic food web resulting in microplankton phenology changes and decreased trophic transfer efficiency[J].PLoS One,2014,9(4):e94388.
    [53]Del Giorgio P A,Cole J J.Bacterial growth efficiency in natural aquatic systems[J].Annual Review of Ecology and Systematics,1998,29(1):503-541.
    [54]Huete-Stauffer T M,Arandia-Gorostidi N,Diaz-Perez L,et al.Temperature dependences of growth rates and carrying capacities of marine bacteria depart from metabolic theoretical predictions[J].FEMS Microbiology Ecology,2015,91(10):fiv111.
    [55]Vázquez-Domínguez E,VaquéD,Gasol J M.Ocean warming enhances respiration and carbon demand of coastal microbial plankton[J].Global Change Biology,2007,13(7):1327-1334.
    [56]Rivkin R B,Legendre L.Biogenic carbon cycling in the upper ocean:effects of microbial respiration[J].Science,2001,291(5512):2398-2400.
    [57]Apple J K,Del Giorgi P A,Kemp W M.Temperature Regulation of Bacterial Production,Respiration,and Growth Efficiency in a Temperate Salt-marsh Estuary[J].Aquatic Microbial Ecology,2006,43(3):243-254.
    [58]Sarmento H,Montoya J M,Vazquez-Dominguez E,et al.Warming effects on marine microbial food web processes:how far can we go when it comes to predictions?[J].Philosophical transactions of the Royal Society of London Series B,Biological sciences,2010,365(1549):2137-2149.
    [59]MarraséC,Lim E L,Caron D A.Seasonal and daily changes in bacterivory in a coastal plankton community[J].Marine Ecology Progress Series,1992,82(3):281-289.
    [60]VaquéD,Guadayolò,Peters F,et al.Differential response of grazing and bacterial heterotrophic production to experimental warming in Antarctic waters[J].Aquatic Microbial Ecology,2009,54(1):101-112.
    [61]Vázquez-Domínguez E,VaquéD,Gasol J M.Temperature effects on the heterotrophic bacteria,heterotrophic nanoflagellates,and microbial top predators of the NW Mediterranean[J].Aquatic Microbial Ecology,2012,67(2):107-121.
    [62]Lara E,Arrieta J M,Garcia-Zarandona I,et al.Experimental evaluation of the warming effect on viral,bacterial and protistan communities in two contrasting Arctic systems[J].Aquatic Microbial Ecology,2013,70(1):17-32.
    [63]Rose J M,Feng Y,Gobler C J,et al.Effects of increased pCO2 and temperature on the North Atlantic spring bloom.II.Microzooplankton abundance and grazing[J].Marine Ecology Progress Series,2009,388:27-40.
    [64]Chen B,Landry M R,Huang B,et al.Does warming enhance the effect of microzooplankton grazing on marine phytoplankton in the ocean?[J].Limnology and oceanography,2012,57(2):519-526.
    [65]Kvale K F,Meissner K J,Keller D P.Potential increasing dominance of heterotrophy in the global ocean[J].Environmental Research Letters,2015,10(7):074009.
    [66]O'gorman E J,Pichler D E,Adams G,et al.Impacts of warming on the structure and functioning of aquatic communities[J].Advances in Ecological Research,2012,47:81-176.
    [67]Harris L A,Duarte C M,Nixon S W.Allometric laws and prediction in estuarine and coastal ecology[J].Estuaries and Coasts,2006,29(2):340-344.
    [68]Wohlers J,Engel A,Z?llner E,et al.Changes in biogenic carbon flow in response to sea surface warming[J].Proceedings of the National Academy of Sciences of the United States of America,2009,106(17):7067-7072.
    [69]Panigrahi S,Nydahl A,Anton P,et al.Strong seasonal effect of moderate experimental warming on plankton respiration in a temperate estuarine plankton community[J].Estuarine,coastal and shelf science,2013,135:269-279.
    [70]Pires A P F,Guariento R D,Laque T,et al.The negative effects of temperature increase on bacterial respiration are independent of changes in community composition[J].Environmental Microbiology Reports,2014,6(2):131-135.
    [71]Wilken S,Huisman J,Naus-Wiezer S,et al.Mixotrophic organisms become more heterotrophic with rising temperature[J].Ecology Letters,2013,16(2):225-233.
    [72]Savage V M,Gillooly J F,Brown J H,et al.Effects of body size and temperature on population growth[J].The American Naturalist,2004,163(3):429-441.
    [73]Anderson-Texeira K J,Vitousek P M.Ecosystems[C].//Sibly R M,Brown J H,Kodric-Brown A.Metabolic ecology:a scaling approach.UK:John Wiley&Sons,2012:99-111
    [74]Morán X A,Alonso-Saez L,Nogueira E,et al.More,smaller bacteria in response to ocean's warming?[J].Proceedings of the Royal Society B:Biological Sciences2015,282(1810):20150371.
    [75]Li W K W,Head E J H,Glen Harrison W.Macroecological limits of heterotrophic bacterial abundance in the ocean[J].Deep Sea Research Part I:Oceanographic Research Papers,2004,51(11):1529-1540.
    [76]Morán X A G,Gasol J M,Pernice M C,et al.Temperature regulation of marine heterotrophic prokaryotes increases latitudinally as a breach between bottom-up and top-down controls[J].Global Change Biology,201723(9):3956-3964.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700