用户名: 密码: 验证码:
丝孢酵母TX1及其固定化降解苯酚特性研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:An approach to the phenol-degrading performance via the immobilized Trichosporon sp. TX1
  • 作者:吴芳芳 ; 林皓 ; 邱凌峰 ; 胡家朋 ; 刘瑞来
  • 英文作者:WU Fang-fang;LIN Hao;QIU Ling-feng;HU Jia-peng;LIU Rui-lai;Fujian Provincial Key laboratory of Eco-Industrial Green Technology,College of Ecological and Resource Engineering,Wuyi University;College of Environment and Resources, Fuzhou University;Key Laboratory of Polymer Materials of Fujian Province,College of Material Science and Engineering,Fujian Normal University;
  • 关键词:环境工程学 ; 固定化细胞 ; 丝孢酵母 ; 降酚性能 ; 中间产物
  • 英文关键词:environmental engineering;;immobilized cell;;Trichosporon sp.;;phenol-degrading performance;;intermediates
  • 中文刊名:AQHJ
  • 英文刊名:Journal of Safety and Environment
  • 机构:武夷学院生态与资源工程学院福建省生态产业绿色技术重点试验室;福州大学环境与资源学院;福建师范大学材料科学与工程学院福建省高分子材料与工程重点试验室;
  • 出版日期:2019-02-25
  • 出版单位:安全与环境学报
  • 年:2019
  • 期:v.19;No.109
  • 基金:国家自然科学基金项目(51406141);; 福建省自然科学基金项目(2018J05092);; 福建省高校产学研合作项目(2018Y4011);; 福建省中青年教师教育科研项目(JAT170596,JAT170595);; 南平市科技计划项目(N2017DN06);; 武夷学院基金项目(XQ1210)
  • 语种:中文;
  • 页:AQHJ201901043
  • 页数:7
  • CN:01
  • ISSN:11-4537/X
  • 分类号:282-288
摘要
为研究固定化技术在含酚废水治理中的应用,以聚乙烯醇(PVA)为载体将高效降酚菌株丝孢酵母TX1包埋处理得到胶珠颗粒,在分批培养反应器内分别研究游离体系和固定化体系中溶液p H值、培养温度和苯酚初始质量浓度对TX1降解苯酚效果的影响。结果表明,在游离细胞体系TX1对苯酚降解最佳培养条件为温度30℃,p H=7. 0;而固定化体系中的TX1对苯酚降解的最佳条件为温度30℃,p H=6. 5。在偏酸性条件下,游离细胞体系中TX1对苯酚降解效果比固定化体系差,在25~40℃时后者对苯酚的降解能保持50%以上,表明固定化技术有利于提高微生物的耐受温度。两个体系在降解苯酚过程中均受到底物抑制:在低质量浓度时(≤1 000 mg/L),游离细胞降解速率高于固定化细胞,但当苯酚质量浓度高达3 000 mg/L时,固定化体系中TX1对苯酚比降解速率为0. 088 h-1,远高于前者,表明固定化技术有利于实际高浓度废水的处理。此外,利用高效液相色谱和气相色谱-质谱检测苯酚降解中间产物,只在固定化体系中检测到中间产物为邻苯二酚和顺,顺-黏糠酸。该结果表明,降解过程中固定化体系发生的扩散阻力延迟了体系的降解反应,有利于发现中间体,使固定化技术有望成为新的检测中间体的方法。
        The aim of the present paper is to investigate the application of the immobilization technology in the treating phenolic sewage via the immobilized Trichosporon sp. TX1 by polyvinyl alcohol. The efficient phenol-degrading Trichosporon sp. can help to fabricate the TX1 immobilized PVA-embedded beads. Therefore,parameters( p H,the culture temperature and phenol initial concentration on the degradation of phenol by using the sequential culture reactor) were considered. The results indicated that the optimized condition for the degradation of phenol was under the condition when the temperature was at 30 ℃ and p H value was7. 0 in the system of free cell. Moreover,the optimized temperature and p H value for the fixed cells to degrade the phenol war at30 ℃ and 6. 5,respectively. What's more,the thermo-stability of the immobilized cell beads have been recognized to be betterthan the free cells. In addition,the immobilized cell beads also prove to be of higher activity for the phenol degradation under the meta-acid circumstances. The degraded phenol molecules remain to be efficient over 50% on the former condition when the temperature keeps in the range from 25 ℃ to 40 ℃,though the latter might have few biodegradable phenol beads at 40 ℃,when they used to function as the inhibitors both in the fixed and liberal systems in the degrading process. Furthermore,in the condition of the lower content concentration rates( less than 1 000 mg/L),the degradation rate of the fixed cells might be made higher than in the fixed cell systems. Thus,the specific degradation rate for the immobilized cells TX1 can be made to reach0. 088 h-1 on the condition when the phenol concertation rate can go up to 3 000 mg/L. Such situation can help to verify that the immobilized cells would be more suitable for high content concentration rate sewage treatment. Nevertheless,what we have observed in the fixed systems is just the intermediate ones,such as catechol and cis,cis-muconic acid via the high performance liquid chromatography and gas chromatography-mass spectrometry.Therefore,the diffusion resistance of the immobilized system has been found inhibiting the rate during the process of the phenol degradation,which turns out to be beneficial to detect the intermediates. Thus,the above results we have gained demonstrate that the immobilized technology enjoys the potential for developing novel methods to detect more kinds of intermediates.
引文
[1] ZHANG Hongtao(张红涛),LIU Yongjun(刘永军),ZHANG Yunpeng(张云鹏). Immobilization of high-effi-cient phenol degrading bacteria using PVA freeze-thawmethod[J]. Chemical Industry and Engineering Progress(化工进展),2013,32(7):1712-1716.
    [2] JIANG Lichun(姜立春),RUAN Qiping(阮期平),WANG Xiaoli(王晓丽). Study on the optimal immobi-lization conditiond of phenol degreding bacteria JY03 andits degradation performance[J]. Environmental Engineer-ing(环境工程),2014,32(2):36-40.
    [3] DUAN L,WANG H,SUN Y,et al. Biodegradationof phenol from wastewater by microorganism immobi-lized in bentonite and carboxymethyl cellulose gel[J]. Chemical Engineering Communications,2016,203(7):948-956.
    [4] GRIGOR'EV D,MUABEKOV K B,MUSABEKOV N K,et al. The immobilization of antineoplastic drug cyclophos-phamide in calcium alginate[J]. Polymer Science Series A2017,59(4):506-514.
    [5] KLEIN J A,LEE D. Biological treatment of aqueouswastes from coal conversion processes[J]. BiotechnologyBioengineer,1978,8(12):379-390.
    [6] KARUBE I,KURIYAMA S,MATSUNAGA M,et al.Methane production from wastewaters by immobilizedmethanogenic bacteria[J]. Biotechnology and Bioengi-neering,1980,12:847-857.
    [7] ZHOU Ding(周定),HOU Wenhua(候文华). Treatmentof phenol-containing wastewater by immobilized microor-ganism[J]. Chinese Journal of Environmental Science(环境科学),1990,11(1):2-6.
    [8] ANEEZ A F Y,MOHAMMAD K A A. Enhanceddegradation of phenol by Pseudomonas sp. CP4 en-trapped in agar and calcium alginate beads in batchand continuous processes[J]. Biodegradation,2011,22(2):253-265.
    [9] WANG Jing,ZHANG Xuwang,FAN Jiangli,et al. Indi-goids biosynthesis from indole by two phenol-degradingstrains,Pseudomonas sp. PI1 and Acinetobacter sp. PI2[J]. Applied Biochemistry and Biotechnology,2015,176(5):1263-1276.
    [10] WU Fangfang(吴芳芳),QIU Lingfeng(邱凌峰). Isola-tion,idetefication and metabolic pathway of phenol-de-grading Trichodporon sp. X1[J]. Journal of Fuzhou Uni-versity:Natural Science(福州大学学报:自然科学版),2010,38(5):767-772.
    [11] QIU Lingfeng(邱凌峰),WU Fangfang(吴芳芳),YAOYao(姚尧). Biodegradation kinetics study and processoptimization on removal of phenol with Trichosporon sp.strain TX1[J]. Chinese Journal of Environmental Engi-neering(环境工程学报),2011,5(3):537-542.
    [12] DOU Jingjing(窦晶晶). The research of embedding pesti-cide degrading bacteria and the performance degradation(多菌灵降解菌的包埋及其降解性能的研究)[D].Yangling:Northwest A&F University,2011.
    [13] TALWAR M P,INNEKAR H Z. Biodegradation of pesti-cide profenofos by the free and immobilized cells ofPseudoxanthomonas suwonensis strain HNM[J]. Journalof Basic Microbiology,2015,55(9):1094-1103.
    [14] TAN Liang,LI Hua,NING Shuxiang,et al. Aerobic de-colorization and degradation of acid orange G(AOG)bysuspended growing cells and immobilized cells of a yeaststrain candida tropicalis TL-F1[J]. Applied Biochemistryand Biotechnology,2014,174(4):1651-1667.
    [15] RAO B Y K,GODBOLE S S,D'SOUZA S F. Enhanceddegradation of 2-nitrotoluene by immobilized cells of Mi-crococcus sp. strain SMN-1[J]. Biotechnology Letter,1998,10(3):427-430.
    [16] CHEN Kuocheng,LIN Yunhuin,CHEN Wenhsiang,etal. Degradation of phenol by PAA-immobilized candidatropicalis[J]. Enzyme Microbiology Technology,2002,31(2):490-497.
    [17] REARDON K F,MOSTELLER D C,Rogers J D B. Bio-degradation kinetics of benzene,toluene and phenol assingle and mixed substrate for pseudomonas putida[J].Biotechnology Bioengineer,2000,69(12):386-400.
    [18] DORAN P M,BAILY J E. Effects of hydroxyurea on im-mobilized and suspended yeast fermentation rates andcell-cycle operation[J]. Biotechnology Bioengineer,1986,28(4):73-87.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700