用户名: 密码: 验证码:
自然水体中超声波标记鱼游动轨迹精密确定算法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Accurate determination algorithm of swimming trajectory for ultrasonically-tagged fish in natural water
  • 作者:侯轶群 ; 邹璇 ; 姜伟 ; 陈亮 ; 朱佳志
  • 英文作者:Hou Yiqun;Zou Xuan;Jiang Wei;Chen Liang;Zhu Jiazhi;Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes,Chinese Sturgeon Research Institute,China Three Gorges Corporation;Institute of Hydroecology,Ministry of Water Resources and Chinese Academy of Sciences;GNSS Research Center,Wuhan University;Qianxun SI Inc.;
  • 关键词:位置确定 ; 超声波 ; 算法 ; ; 自然水体 ; 距离交汇 ; 游动轨迹 ; 粗差探测
  • 英文关键词:position measurement;;ultrasonic waves;;algorithms;;fish;;natural aquatic environment;;distance intersection;;swimming trajectory;;gross error detection
  • 中文刊名:NYGU
  • 英文刊名:Transactions of the Chinese Society of Agricultural Engineering
  • 机构:三峡工程鱼类资源保护湖北省重点实验室中国三峡集团中华鲟研究所;水利部中国科学院水工程生态研究所;武汉大学卫星导航定位技术研究中心;千寻位置网络有限公司;
  • 出版日期:2019-02-08
  • 出版单位:农业工程学报
  • 年:2019
  • 期:v.35;No.355
  • 基金:三峡工程鱼类资源保护湖北省重点实验室开放课题项目(SXSN/4008);; 国家自然科学基金资助项目(51609157,51609155)
  • 语种:中文;
  • 页:NYGU201903023
  • 页数:7
  • CN:03
  • ISSN:11-2047/S
  • 分类号:190-196
摘要
针对鱼类关键生境位置确定的应用需求,该文提出了一套适用于自然水体的超声波标记鱼定位算法,解决了标记鱼定位以及存在粗差观测值,即水听器记录的超声波信号接收时间存在错误情况下算法的抗干扰性。宜昌黄柏河的实测结果表明,基于现有1 ms级精度的水听器,可在自然水体中获得2.15 m精度的信号标记鱼三维游动轨迹。如因气泡、遮挡等因素对水听器观测数据引入粗差,当粗差量级在10 m以上,该方法可接近100%探测出是否存在粗差。当粗差观测值在3个以内时,该方法的探测成功率可达84.3%以上,3个以上时粗差探测成功率明显下降,5个及以上,即粗差观测值个数占观测值总数的比例大于31.25%时,基本只能探测出观测数据中存在粗差而无法有效确定粗差。该研究可为渔业增殖、鱼类栖息地保护、鱼类洄游通道等研究提供参考。
        An important goal of hydrobiology is the simulation,reconstruction and restoration of important fish habitats,in which fish species form aquatic ecosystems' climax communities,enabling structural and functional restoration of river ecosystems.Traditional methods for identifying key fish habitat locations such as spawning grounds,include fish resource surveys,observation of fish spawning behavior and interviews with fishermen.But these are subject to problems including poor accuracy and large error.Precise positioning of fish can accurately locate key habitats(such as spawning grounds) based on key life cycle phases(such as spawning periods),permitting observation of corresponding habitat parameters.Fish movement trajectory data can also deepen understanding of fish habits and habitats,permitting suitable habitat indicators to be scientifically determined,and providing theoretical and technical support for fish protection and habitat restoration efforts.Ultrasonic tag tracking technology is widely used in fish behavior research due to its long underwater propagation distance and broad applicability.But most existing researches derived fish movement trajectories from hydrophone data using equipment manufacturers' software or services,and few articles concerning fish positioning principles and methods optimized for natural aquatic environments have been published.The Chan's algorithm(1994) in literature[24] and robust least squares estimation were combined to get the location of ultrasonically-tagged fish in this paper,leveraging the strengths of these methods to overcome their disadvantages when used singly.Chan's algorithm was first used to obtain approximate coordinates of fish,which were used as initial position estimates from which the final position estimates were obtained with robust least squares.Prior information such as water depth and fish swimming speed could also be taken into account,making the proposed positioning method well-suited for dealing with ultrasonically-tagged fish in natural aquatic environments.The proposed method was suitable for existing ultrasound hydrophones,and effectively solved problems with large observation errors.Based on these research results,the UWP(under water positioning) software package was developed.To verify the effectiveness of the proposed method,an observation network was constructed which consisting of 16 hydrophones uniformly distributed over a area of 120 m×120 m in Huangbai River,Yichang.4 ultrasonic signal tags were used to evaluate the positioning results,2 was co-located with hydrophones for static simulation,and the other 2 affixed to a boat hull for dynamic simulation.Comparisons with Beidou/GNSS RTK with centimeter-level accuracy positioning estimates over 115 groups of test results,using millisecond-level accuracy observation data from existing hydrophones,swimming trajectories of ultrasonically-tagged fish could be obtained to an accuracy of about 2.15 m.While complex water environments degraded this accuracy,where single observations contained gross errors exceeding 10 m,100% of these errors could be identified.The success rate for identification of observations with gross error was a gradually declining function of gross errors,dropping to 84.3% for 3 such observations.With over 3 gross error-bearing observations,the success rate declined significantly.With over 5 gross error-bearing observations where gross error-bearing observations accounted for over 31.25% of all observations,application of the proposed method could detect the error' existence,but was unable to identify the error-bearing observations effectively.The ultrasonic tag precise positioning method of fish proposed in this paper provide an effective method for determining the accurate swimming trajectory of fish in rivers,lakes and seas with low visibility.In addition,by modifying the data communication interface,this method can be effectively applied to ultrasonicall-taggeds fish and hydrophones of different manufacturers.In the future,it can play a more important role in promoting ecological environmental protection,and human beings' understanding of ecological and behavioral evolution in the aquatic environment at the population level.
引文
[1]何大仁.鱼类行为学[M].厦门:厦门大学出版社,1998.
    [2]吴常文,徐梅英,胡春春.几种深水网箱养殖鱼类行为习性的观察[J].水产学报,2006,30(4):481-488.Wu Changwen,Xu Meiying,Hu Chunchun.Study on the behavioral characteristics of fishes in the deep water sea cage[J].Journal of fisheries of China,2006,30(4):481-488.(in Chinese with English abstract)
    [3]田超,黄志勇,熊彪,等.运用多视图几何原理重建鱼类游泳三维轨迹[J].水产学报,2017,41(10):1631-1637.Tian Chao,Huang Zhiyong,Xiong Biao,et al.Fish swimming 3D trajectory reconstruction based on multi-view geometry[J].Journal of fisheries of China,2017,41(10):1631-1637.(in Chinese with English abstract)
    [4]范良忠,刘鹰,余心杰,等.基于计算机视觉技术的运动鱼检测算法[J].农业工程学报,2011,27(7):226-230.Fan Liangzhong,Liu Ying,Yu Xinjie,et al.Fish motion detecting algorithms based on computer vision technologies[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2011,27(7):226-230.(in Chinese with English abstract)
    [5]王毅凡,周密,宋志慧.水下无线通信技术发展研究[J].通信技术,2014(6):589-594.Wang Yifan,Zhou Mi,Song Zhihui.Development of underwater wireless communication technology[J].Communications Technology,2014(6):589-594.(in Chinese with English abstract)
    [6]张胜茂,张衡,唐峰华,等.计算机视觉技术在监测鱼类游泳行为中的研究进展[J].大连海洋大学学报,2017,32(4):493-500.Zhang Shengmao,Zhang Heng,Tang Fenghua,et al.Research progress on fish swimming behavior monitoring by computer vision technology[J].Journal of Dalian Ocean University,2017,32(4):493-500.(in Chinese with English abstract)
    [7]孙志伟,袁琳,叶丹,等.水生态监测技术研究进展及其在长江流域的应用[J].人民长江,2016,47(17):6-11.Sun Zhiwei,Yuan Lin,Ye Dan,et al.Progress of water ecological monitoring technology and its application in Yangtze River Basin[J].Yangtze River,2016,47(17):6-11.(in Chinese with English abstract)
    [8]吴金明,王成友,张书环,等.从连续到偶发:中华鲟在葛洲坝下发生小规模自然繁殖[J].中国水产科学,2017,24(3):425-431.Wu Jinming,Wang Chengyou,Zhang Shuhuan,et al.From continuous to occasional:Small-scale natural reproduction of Chinese sturgeon occured in the gezhouba spawning ground,Yichang,China[J].Journal of Fishery Sciences of China,2017,24(3):425-431.(in Chinese with English abstract)
    [9]刘明典,高雷,田辉伍,等.长江中游宜昌江段鱼类早期资源现状[J].中国水产科学,2018(1):147-158.Liu Mingdian,Gao Lei,Tian Huiwu,et al.Status of fishes at the early life history stage in the Yichang section in the middle reaches of the Yangtze River[J].Journal of Fishery Sciences of China,2018(1):147-158.(in Chinese with English abstract)
    [10]陈明千,脱友才,李嘉,等.鱼类产卵场水力生境指标体系初步研究[J].水利学报,2013,44(11):1303-1308.Chen Mingqian,Tuo Youcai,Li Jia,et al.Preliminary study on index system describing hydraulic characteristics of fish spawning ground[J].Journal of Hydraulic Engineering,2013,44(11):1303-1308.(in Chinese with English abstract)
    [11]颜文斌.短须裂腹鱼繁殖行为生态学研究[D].上海:上海海洋大学,2016.Yan Wenbin.Studies on Reproductive Behavioural Ecology of Schizothorax Wanchiachii[D].Shanghai:Shanghai Ocean University,2016.(in Chinese with English abstract)
    [12]冯宪斌,朱永久,李茜,等.试验条件下岩原鲤幼鱼栖息地适宜性模型及最小栖息面积估算[J].应用生态学报,2013,24(1):227-234.Feng Xianbin,Zhu Yongjiu,Li Xi,et al.Habitat suitability index model and minimum habitat area estimation of young Procypris rabaudi(Tchang):A simulation experiment in laboratory[J].Chinese Journal of Applied Ecology,2013,24(1):227-234.(in Chinese with English abstract)
    [13]Muller L J,Franklin A,George Ii R W.Ultrasonic ranging system:US4701893[P].1987-10-20.
    [14]王慧.超声波水下通信编码的研究[D].成都:成都理工大学,2012.Wang Hui.Research on Coding of Ultrasonic Underwater Communication[D].Chengdu:Chengdu University of Technology,2012.(in Chinese with English abstract)
    [15]王成友.长江中华鲟生殖洄游和栖息地选择[D].武汉:华中农业大学,2012.Wang Chengyou.Migrations for Reproduction of Chinese Sturgeon(Acipenser sinensis)and its Habitat Selections in the Yangtze River[D].Wuhan:Huazhong Agricultural University,2012.(in Chinese with English abstract)
    [16]危起伟,杨德国,柯福恩.长江中华鲟超声波遥测技术[J].水产学报,1998,22(3):211-217.Wei Qiwei,Yang Deguo,Ke Fuen.Technique of ultrasonic telemetry for Chinese sturgeon,acipenser sinensis,in Yangtze River[J].Journal of fisheries of China,1998,22(3):211-217.(in Chinese with English abstract)
    [17]Andrews K S,Tolimieri N,Williams G D,et al.Comparison of fine-scale acoustic monitoring systems using home range size of a demersal fish[J].Marine Biology,2011,158(10):2377-2387.
    [18]Cooke S J,Midwood J D,Thiem J D,et al.Tracking animals in freshwater with electronic tags:Past,present and future[J].Animal Biotelemetry,2013,1(5):1-19.
    [19]Espinoza M,Farrugia T J,Webber D M,et al.Testing a new acoustic telemetry technique to quantify long-term,fine-scale movements of aquatic animals[J].Fisheries Research,2011,108(2):364-371.
    [20]Thorstad E B,Rikardsen A H,Alp A,et al.The use of electronic tags in fish research:An overview of fish telemetry methods[J].Turkish Journal of Fisheries&Aquatic Sciences,2013,13(13):881-896.
    [21]Schultz A A,Afentoulis V B,Yip C J,et al.Efficacy of an acoustic tag with predation detection technology[J].North American Journal of Fisheries Management,2017,37(3):574-581.
    [22]Smith J O,Abel J S.Close-form least-squares source location estimation from range-difference measurements[J].IEEETransactions on Acoustics Speech&Signal Processing,1987,35(12):1661-1669.
    [23]Chan Y T,Ho K C.A simple and efficient estimator for hyperbolic location[J].IEEE Transactions on Signal Processing,1994,42(8):1905-1915.
    [24]Deng Ping.An NLOS error mitigation scheme based on TDOA reconstruction for cellular location services[J].Chinese Journal of Radio Science,2003,18(3):311-316.
    [25]周江文.经典误差理论与抗差估计[J].测绘学报,1989(2):115-120.Zhou Jiangwen.Classical theory of errors and robust estimation[J].Acta Geodaetica et Cartographica Sinica,1989(2):115-120.(in Chinese with English abstract)
    [26]张小红,潘宇明,左翔,等.一种改进的抗差Kalman滤波方法在精密单点定位中的应用[J].武汉大学学报﹕信息科学版,2015,40(7):858-864.Zhang Xiaohong,Pan Yuming,Zou Xiang,et al.An improved Kalman filtering and its application in PPP[J].Geomatics and Information Science of Wuhan University,2015,40(7):858-864.(in Chinese with English abstract)
    [27]Katopodis C,Gervais R.Ecohydraulic analysis of fish fatigue data[J].River Research&Applications,2012,28(4):444-456.
    [28]崔希璋.广义测量平差[M].武汉:武汉大学出版社,2009.
    [29]邹璇,李宗楠,陈亮,等.一种历元间差分单站单频周跳探测与修复方法[J].武汉大学学报﹕信息科学版,2017,42(10):1406-1410.Zou Xuan,Li Zongnan,Chen Liang,et al.A new cycle slip detection and repair method based on epoch difference for a single-frequency GNSS receiver[J].Geomatics and Information Science of Wuhan University,2017,42(10):1406-1410.(in Chinese with English abstract)
    [30]Yang Y,Xu J.GNSS receiver autonomous integrity monitoring(RAIM)algorithm based on robust estimation[J].Geodesy and Geodynamics,2016,2(7):117-123.
    [31]Chen C,Millero F J.Speed of sound in seawater at high pressures[J].Journal of the Acoustical Society of America,1977,62(5):1129-1135.
    [32]Millero F,Li X.Comments on''On equations for the speed of sound in seawater''[J].Acoustical Society of America Journal.1994,95.2757-2759.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700