用户名: 密码: 验证码:
基底材料对MoS_2的应变场影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The Effect of Substrate Material on Strain Field of MoS_2
  • 作者:吴亚俊 ; 周行
  • 英文作者:WU Yajun;ZHOU Hang;College of Physics and Communication Electronics,Jiangxi Normal University;Laboratory of Micro Nano Materials and Sensors,Jiangxi Normal University;
  • 关键词:基底 ; MoS_2 ; 杨氏模量 ; 泊松比 ; 应变 ; 有限元
  • 英文关键词:base;;MoS_2;;Young′s modulus;;Poisson′s ratio;;strain;;finite element method
  • 中文刊名:CAPE
  • 英文刊名:Journal of Jiangxi Normal University(Natural Science Edition)
  • 机构:江西师范大学物理与通信电子学院;江西师范大学微纳材料与传感器件重点实验室;
  • 出版日期:2019-07-15
  • 出版单位:江西师范大学学报(自然科学版)
  • 年:2019
  • 期:v.43
  • 基金:国家自然科学基金(51761017,51661012,51461019)资助项目
  • 语种:中文;
  • 页:CAPE201904010
  • 页数:6
  • CN:04
  • ISSN:36-1092/N
  • 分类号:62-67
摘要
利用有限元法分析对生长在Au、Cu、Al_2O_3、SiO_2、Ni这5种不同基底上的层状MoS_2的应变分布进行模拟仿真.研究结果表明:基底材料的泊松比不同会使得基底和MoS_2的y方向形变都不相同;基底的杨氏模量不同会使得不同基底底部与二硫化钼(MoS_2)顶部的应变差别不同.在膨胀过程中,y方向底端的拉伸应变大于中间的拉伸应变,这会导致基底与顶端应变高于中间的应变.因此,基底材料的杨氏模量和泊松比与MoS_2的应变分布密切相关.根据仿真结果可得,由于MoS_2在Au和SiO_2基底上所受到的应变较小,导致MoS_2的顶端和基底底部应变差较大,因此容易造成剥离脱落;而在Al_2O_3基底上,由于基底材料具有较高的杨氏模量,且与MoS_2比较接近,所以MoS_2顶端和基底底部呈现的应变差接近.由此可见,在这些材料当中,Al_2O_3更适合作为MoS_2的基底材料.通过研究基底材料的应变场分布,能更好地对纳米材料进行调控,从而改善器件的相关性能.
        The strain distribution of layered MoS_2 grown on Au,Cu,Al_2O_3,SiO_2 and Ni was simulated by finite element method.The results show that the deformation of base and MoS_2 in y direction is different due to different Poisson′s ratio of base materials.Due to different Young′s modulus of the base,the strain difference between the base bottom and the top of molybdenum disulfide is different.In the expansion process,the tensile strain at the bottom of the y direction is greater than the tensile strain at the middle,which will cause the strain at the base and the top to be higher than that at the middle.Therefore,Young′s modulus and Poisson′s ratio of base material are closely related to the strain distribution of MoS_2.According to the simulation results,the strain of MoS_2 on the substrate of Au and SiO_2 is small.the strain difference between the top of MoS_2 and the bottom of the substrate is large,so it was easy for MoS_2 to be peeled off.On the substrate of Al_2O_3,the substrate material has a high Young′s modulus which is close to MoS_2.The strain difference from the top of MoS_2 is similar than the bottom of the substrate.Therefore,among these materials,Al_2O_3 is more suitable for MoS_2 substrate material.By studying the strain field distribution of the substrate material,the nano materials can be better regulated and the related properties of the device can be improved.
引文
[1] 何学侠,刘富才,曾庆圣,等.2维材料双电层场晶体管的研究 [J].化学学报,2015,73(9):924-935.
    [2] 张旭.大面积石墨烯及其透明导电膜的制备与性能研究 [D].兰州:兰州交通大学,2013.
    [3] Radisavljevic B,Radenovic A,Brivio J,et al.Single-layer MoS2 transistors [J].Nature Nanotechnology,2011,6(3):147-150.
    [4] Coleman J N,Lotya M,O′Neill A,et al.Two-dimensional nanosheets produced by liquid exfoliation of layered materials [J].Science,2011,331(6017):568-571.
    [5] Radisavljevic B,Radenovic A,Brivio J,et al.Single-layer MoS2 transistors [J].Nature Nanotechnology,2011,6(3):147.
    [6] Zhang Xian,Sun Dezheng,Li Yilei,et al.Measurement of lateral and interfacial thermal conductivity of single-and bilayer MoS2 and MoSe2 using refined optothermal Raman technique [J].ACS Applied Materials and Interfaces,2015,7(46):25923-25929.
    [7] Gourmelon E,Lignier O,Hadouda H,et al.MS2(M=W,Mo) photosensitive thin films for solar cells [J].Solar Energy Materials and Solar Cells,1997,46(2):115-121.
    [8] Yin Zongyou,Li Hai,Li Hong,et al.Single-layer MoS2 phototransistors [J].ACS Nano,2011,6(1):74-80.
    [9] Wang Qinghua,Kalantar-Zadeh K,Kis A,et al.Electronics and optoelectronics of two-dimensional transition metal dichalcogenides [J].Nature Nanotechnology,2012,7(11):699.
    [10] Hee Sung Lee,Sung-Wook Min,Youn-Gyung Chang,et al.MoS2 nanosheet phototransistors with thickness-modulated optical energy gap [J].Nano Letters,2012,12(7):3695-3700.
    [11] Choi W,Cho M Y,Konar A,et al.High-detectivity multilayer MoS2 phototransistors with spectral response from ultraviolet to infrared [J].Advanced Materials,2012,24(43):5832-5836.
    [12] Voiry D,Yamaguchi H,Li Junwen,et al.Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution [J].Nature Materials,2013,12(9):850.
    [13] Li Yanguang,Wang Hailiang,Xie Liming,et al.MoS2 nanoparticles grown on graphene:an advanced catalyst for the hydrogen evolution reaction [J].Journal of the American Chemical Society,2011,133(19):7296-7299.
    [14] Li Dongjun,Maiti U N,Lim J,et al.Molybdenum sulfide/N-doped CNT forest hybrid catalysts for high-performance hydrogen evolution reaction [J].Nano Letters,2014,14(3):1228-1233.
    [15] Yan Ya,Ge Xiaoming,Liu Zhaolin,et al.Facile synthesis of low crystalline MoS2 nanosheet-coated CNTs for enhanced hydrogen evolution reaction [J].Nanoscale,2013,5(17):7768-7771.
    [16] Zeng Zhiyuan,Tan Chaoliang,Huang Xiao,et al.Growth of noble metal nanoparticles on single-layer TiS2 and TaS2 nanosheets for hydrogen evolution reaction [J].Energy and Environmental Science,2014,7(2):797-803.
    [17] Tan Yongwen,Liu Pan,Chen Luyang,et al.Monolayer MoS2 films supported by 3D nanoporous metals for high-efficiency electrocatalytic hydrogen production [J].Advanced Materials,2014,26(47):8023-8028.
    [18] Yang Ya,Fei Huilong,Ruan Gedeng,et al.Edge-oriented MoS2 nanoporous films as flexible electrodes for hydrogen evolution reactions and supercapacitor devices [J].Advanced Materials,2014,26(48):8163-8168.
    [19] Shi Jianping,Ma Donglin,Han Gaofeng,et al.Controllable growth and transfer of monolayer MoS2 on Au foils and its potential application in hydrogen evolution reaction [J].ACS Nano,2014,8(10):10196-10204.
    [20] Ponraj J S,Buffagni E,Deivasigamani G,et al.Studies of nanoindentation and residual stress analysis of Ge/GaAs epilayers [J].Semiconductor Science & Technology,2015,30(5):55004.
    [21] Jin Zuanming,Xu Yue,Zhang Zhengbing,et al.Strain modulated transient photostriction in La and Nb codoped multiferroic BiFeO3 thin films [J].Applied Physics Letters,2012,101(24):242902.
    [22] Ren Wei,Yang Yurong,Diéguez O,et al.Ferroelectric domains in multiferroic BiFeO3 films under epitaxial strains [J].Physical Review Letters,2013,110(18):187601.
    [23] Zingales M,Failla G.The finite element method for fractional non-local thermal energy transfer in non-homogeneous rigid conductors [J].Communications in Nonlinear Science and Numerical Simulation,2015,29(1/2/3):116-127.
    [24] Liu G R,Dai K Y,Nguyen T T.A smoothed finite element method for mechanics problems [J].Computational Mechanics,2007,39(6):859-877.
    [25] Levitas V I,Idesman A V,Palakala A K.Phase-field modeling of fracture in liquid [J].Journal of Applied Physics,2011,110(3):33531.
    [26] 江子雄,张求龙,袁彩雷.不同生长环境下砷化镓纳米颗粒的应变场模拟 [J].光子学报,2013,42(2):186-190.
    [27] Barettin D,Madsen S,Lassen B,et al.Comparison of wurtzite atomistic and piezoelectric continuum strain models:implications for the electronic band structure [J].Superlattices and Microstructures,2010,47(1):134-138.
    [28] Yuan Cailei,Jiang Zixiong,Ye Shuangli.Strain-induced matrix-dependent deformation of GaAs nanoparticles [J].Nanoscale,2014,6(2):1119-1123.
    [29] Yuan Cailei,Cai Hui,Lee Pooi See,et al.Tuning photoluminescence of Ge/GeO2 core/shell nanoparticles by strain [J].The Journal of Physical Chemistry C,2009,113(46):19863-19866.
    [30] Yuan Cailei,Ye Shuangli,Xu Bo,et al.Strain induced tetragonal SrTiO3 nanoparticles at room temperature [J].Applied Physics Letters,2012,101(7):71909.
    [31] Benabbas T,Androussi Y,Lefebvre A.A finite-element study of strain fields in vertically aligned InAs islands in GaAs [J].J Appl Phys,1999,86(4):1945.
    [32] Pei Qingxiang,Lu Chen,Wang Y Y.Effect of elastic anisotropy on the elastic fields and vertical alignment of quantum dots [J].J Appl Phys,2003,93(3):1487-1492.
    [33] Shin H,Lee W,Yoo Y H.Comparison of strain fields in truncated and un-truncated quantum dots in stacked InAs/GaAs nanostructures with varying stacking periods [J].J Phys Condens Matter,2003,15:3689.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700