用户名: 密码: 验证码:
基于失效物理的功率器件疲劳失效机理
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A Review of Fatigue Mechanism of Power Devices Based on Physics-of-Failure
  • 作者:王学梅 ; 张波 ; 吴海平
  • 英文作者:Wang Xuemei;Zhang Bo;Wu Haiping;School of Electric Power South China University of Technology;BYD Company Limited;
  • 关键词:失效物理 ; 功率器件 ; 可靠性 ; 键合线 ; 焊料层
  • 英文关键词:Physics-of-failure;;power devices;;reliability;;bond wires;;solder layer
  • 中文刊名:DGJS
  • 英文刊名:Transactions of China Electrotechnical Society
  • 机构:华南理工大学电力学院;比亚迪股份有限公司;
  • 出版日期:2018-03-06 09:53
  • 出版单位:电工技术学报
  • 年:2019
  • 期:v.34
  • 基金:国家自然科学基金资助项目(51577074)
  • 语种:中文;
  • 页:DGJS201904010
  • 页数:11
  • CN:04
  • ISSN:11-2188/TM
  • 分类号:85-95
摘要
在功率器件的长期运行中,不断承受的温度和应力变化,加快了材料的疲劳失效。此外,新能源技术的发展对电力电子变流器的功率密度也提出了越来越高的要求,这些都给高可靠性功率器件的设计提出了新的挑战。失效物理(PoF)是在分析失效过程和疲劳机理的基础上,通过建模和仿真预测可靠性的一种方法,是研究疲劳失效的重要手段。本文首先介绍疲劳失效的基础理论。然后,从实验、仿真方法、解析模型和疲劳方式等方面介绍功率器件键合线和焊料层疲劳机理及主要研究进展,在此基础上,分析功率循环下功率器件的疲劳至失效全过程。最后,从多环境应力、动态载荷工况和可靠性设计三个方面,展望基于失效物理的电力电子可靠性研究方向。
        Fatigue failures of the materials of power devices are accelerated because power devices always suffer continuous variations of temperature and stress in their long-term operations.Meanwhile, with the development of renewable energy technology, the demand of power density of power electronic converter is becoming higher and higher. It presents a new challenge for designing high reliability power devices. Therefore, intensive studies of fatigue failure mechanism of power devices are important to the optimizing design of packages, material selection and manufacturing technique, and also the premise of designing high reliable power devices. Physics-of-Failure(PoF) is a vital method to study the fatigue failure, which can predicate the reliability via modeling and simulating based on the analysis of the failure process and mechanism. In this review, the basic theories of fatigue failure are introduced first. Then, the fatigue mechanism and main research progress of bond wires and solder layer of power devices are introduced from the aspects of experiment, simulation,analytical model and fatigue mode. On this basis, the whole process of fatigue to failure of power devices is analyzed. Finally, from three aspects of multi-environmental stress, dynamic loading and reliability design, the research directions of power electronics reliability based on PoF are discussed.
引文
[1]Yang S,Bryant A,Mawby P,et al.An industry based survey of reliability in power electronic converters[J].IEEE Transactions on Industry Applications,2011,47(3):1441-1451.
    [2]Wang H,Liserre M,Blaabjerg F.Toward reliable power electronics:challenges,design tools,and opportunities[J].IEEE Industrial Electronics Magazine,2013,7(2):17-26.
    [3]Choi U M,Blaabjerg F,Lee K B.Study and handling methods of power IGBT module failures in power electronic converter systems[J].IEEE Transactions on Power Electronics,2015,30(5):2517-2533.
    [4]Wang H,Liserre M,Blaabjerg F,et al.Transitioning to physics-of-failure as a reliability driver in power electronics[J].IEEE Journal of Emerging&Selected Topics in Power Electronics,2014,2(1):97-114.
    [5]JEDEC.JEP148 Reliability Qualification of Semiconductor Devices Based on Physics of Failure Risk and Opportunity Assessment[S].2014.
    [6]Matic Z,Sruk V.The Physics-of-failure approach in reliability engineering[C]//30th International Conference on Information Technology Interfaces,Dubrovnik,Croatia,2008:745-750.
    [7]Dietrich P.Trends in automotive power semiconductor packaging[J].Microelectronics Reliability,2013,53(9-11):1681-1686.
    [8]Yang S,Xiang D,Bryant A,et al.Condition monitoring for device reliability in power electronic converters:a review[J].IEEE Transactions on Power Electronics,2010,25(11):2734-2752.
    [9]Yang L,Agyakwa P A,Johnson C M.Physicsof-failure lifetime prediction models for wire bond interconnects in power electronic modules[J].IEEETransactions on Device&Materials Reliability,2013,13(1):9-17.
    [10]Lee W.Solder joint fatigue models:review and applicability to chip scale packages[J].Microelectronics Reliability,2000,40(2):231-244.
    [11]Ciappa M.Lifetime prediction on the base of mission profiles[J].Microelectronics Reliability,2005,45(9-11):1293-1298.
    [12]Vianco P T.Lead-free solder interconnection reliability[M].Detroit:ASM International,2005.
    [13]McPherson J M.Reliability physics and engineering:Time-to-failure modeling[M].New York:Springer,2010.
    [14]Lutz J,Schlangenotto H,Scheuermann U,et al.Semiconductor power devices:physics,characteristics,reliability[M].Berlin:Springer,2011.
    [15]Ramminger S,Seliger N,Wachutka G.Reliability model for Al wire bonds subjected to heel crack failures[J].Microelectronics Reliability,2000,40(8-10):1521-1525.
    [16]Celnikier Y,Benabou L,Dupont L,et al.Investigation of the heel crack mechanism in Al connections for power electronics modules[J].Microelectronics Reliability,2011,51(5):965-974.
    [17]Medjahed H,Vidal P,Nogarede B.Thermomechanical stress of bonded wires used in high power modules with alternating and direct current modes[J].Microelectronics Reliability,2012,52(6):1099-1104.
    [18]Held M,Jacob P,Nicoletti G,et al.Fast power cycling test for insulated gate bipolar transistor modules in traction application[J].International Journal of Electronics,1999,86(10):1193-1204.
    [19]Czerny B,Lederer M,Nagl B,et al.Thermomechanical analysis of bonding wires in IGBTmodules under operating conditions[J].Microelectronics Reliability,2012,52(9-10):2353-2357.
    [20]Liu Y.Power electronic packaging[M].New York:Springer,2012.
    [21]Lu H,Bailey C,Yin C.Design for reliability of power electronics modules[J].Microelectronics Reliability,2009,49(9):1250-1255.
    [22]Celnikier Y,Dupont L,HervéE,et al.Optimization of wire connections design for power electronics[J].Microelectronics Reliability,2011,51(9-11):1892-1897.
    [23]Czerny B,Paul I,Khatibi G,et al.Experimental and analytical study of geometry effects on the fatigue life of Al bond wire interconnects[J].Microelectronics Reliability,2013,53(9-11):1558-1562.
    [24]Ciappa M.Selected failure mechanisms of modern power modules[J].Microelectronics Reliability,2002,42(4-5):653-667.
    [25]Huang H,Mawby P.A lifetime estimation technique for voltage source inverters[J].IEEE Transactions on Power Electronics,2013,28(8):4113-4119.
    [26]Wu K,Lin S,Hung T,et al.Reliability assessment of packaging solder joints under different thermal cycle loading rates[J].IEEE Transactions on Device&Materials Reliability,2015,15(3):437-442.
    [27]Zhuang W D,Chang P C,Chou F Y,et al.Effect of solder creep on the reliability of large area die attachment[J].Microelectronics Reliability,2001,41(12):2011-2021.
    [28]Bouarroudj M,Khatir Z,Ousten J P,et al.Comparison of stress distributions and failure modes during thermal cycling and power cycling on high power IGBT modules[C]//European Conference on Power Electronics and Applications,Aalborg,Denmark,2007:1-10.
    [29]Lutz J,Herrmann T,Feller M,et al.Power cycling induced failure mechanisms in the viewpoint of rough temperature environment[C]//5th International Conference on Integrated Power Electronics Systems,Nuremberg,Germany,2008:1-4.
    [30]Zheng Libing,Han Li,Liu Jun,et al.Investigation of the temperature character of IGBT solder delamination based the 3-D thermal-electro coupling FEM[C]//Power and Energy Engineering Conference(APPEEC),Chengdu,China,2010:1-4.
    [31]Yamada S E.A bonded joint analysis for surface mount components[J].Journal of Electronic Packaging,1992,114(1):1-7.
    [32]Fleischer A S,Chang L H,Johnson B C.The effect of die attach voiding on the thermal resistance of chip level packages[J].Microelectronics Reliability,2006,46(5):794-804.
    [33]Katsis D C,Vanwyk J D.A thermal,mechanical,and electrical study of voiding in the solder die-attach of power MOSFETs[J].IEEE Transactions on Components&Packaging Technologies,2006,29(1):127-136.
    [34]Gao Bing,Yang Fan,Chen Minyou,et al.Atemperature gradient based condition estimation method for IGBT module[J].IEEE Transactions on Power Electronics,2016,32(3):2227-2242.
    [35]Chen Y,Wu X,Fedchenia I,et al.A comprehensive analytical and experimental investigation of wire bond life for IGBT modules[C]//27th Annual IEEEon Applied Power Electronics Conference and Exposition,Orlando,America,2012:2298-2304.
    [36]Czerny B,Paul I,Khatibi G,et al.Influence of wirebond shape on its lifetime with application to frame connections[C]//14th International Conference on Thermal,Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems,Wroclaw,Poland,2013:1-5.
    [37]Lu H,Tilford T,Newcombe D R.Lifetime prediction for power electronics module substrate mount-down solder interconnect[C]//International Symposium on High Density Packaging and Microsystem Integration,Shanghai,China,2007:1-6.
    [38]郑利兵,韩立,刘钧,等.基于三维热电耦合有限元模型的IGBT失效形式温度特性研究[J].电工技术学报,2011,26(7):242-246.Zheng Libing,Han Li,Liu Jun,et al.Investigation of the temperature character of IGBT failure mode based on 3D thermal-electro coupling FEM[J].Transactions of China Electrotechnical Society,2011,26(7):242-246.
    [39]Tian Tian,Liang Lin,Xin Wei,et al.Influences of DBC metal layout on the reliability of IGBT power modules[C]//IEEE 3rd Workshop on Wide Bandgap Power Devices and Applications,Blacksburg,America,2015:166-169.
    [40]Xu Ling,Wang Miaocao,Zhou Yang,et al.An optimal structural design to improve the reliability of Al2O3-DBC substrates under thermal cycling[J].Microelectronics Reliability,2015,56(6):101-108.
    [41]胡震.功率器件的故障诊断及疲劳寿命预测[D].天津:天津理工大学,2014.
    [42]Murdock D A,Torres J E R,Connors J J,et al.Active thermal control of power electronic modules[J].IEEETransactions on Industrial Application,2006,42(2):552-558.
    [43]陈民铀,高兵,杨帆,等.基于电-热-机械应力多物理场的IGBT焊料层健康状态研究[J].电工技术学报,2015,30(20):252-260.Chen Minyou,Gao Bing,Yang Fan,et al.Healthy evaluation on IGBT solder based on electrothermal-mechanical analysis[J].Transactions of China Electrotechnical Society,2015,30(20):252-260.
    [44]汪波,罗毅飞,张烁,等.IGBT极限功耗与热失效机理分析[J].电工技术学报,2016,31(12):135-141.Wang Bo,Luo Yifei,Zhang Shuo,et al.Analysis of limiting power dissipation and thermal failure mechanism[J].Transactions of China Electrotechnical Society,2016,31(12):135-141.
    [45]Feller L,Hartmann S,Schneider D.Lifetime analysis of solder joints in high power IGBT modules for increasing the reliability for operation at 150 degrees centigrade[J].Microelectronics Reliability,2008,48(8):1161-1166.
    [46]Liu Binli,Liu Dezhi,Tang Yong,et al.The investigation on the lifetime prediction model of IGBT[J].Power Procedia,2011,12(1):394-402.
    [47]Held M,Jacob P,Nicoletti G,et al.Fast power cycling test of IGBT modules in traction application[C]//IEEE International Conference on Power Electronics and Drive Systems,Singapore,1997:1-6.
    [48]?zkol E,Brem F,Liu C,et al.Enhanced power cycling performance of IGBT modules with a reinforced emitter contact[J].Microelectronics Reliability,2015,55(6):912-918.
    [49]Ciappa M,Fichtner W.Lifetime prediction of IGBTmodules for traction applications[C]//38th Annual IEEE International Conference on Reliability Physics Symposium,San Jose,America,2000:210-216.
    [50]Xiong Yali,Cheng Xu,Shen Z J,et al.Prognostic and warning system for power-electronic modules in electric,hybrid electric,and fuel-cell vehicles[J].IEEE Transactions on Industrial Electronics,2008,55(6):2268-2276.
    [51]唐勇,汪波,陈明,等.高温下的IGBT可靠性与在线评估[J].电工技术学报,2014,29(6):17-23.Tang Yong,Wang Bo,Chen Ming,et al.Reliability and on-line evaluation of IGBT modules under high temperature[J].Transactions of China Electrotechnical Society,2014,29(6):17-23.
    [52]Lai Wei,Chen Minyou,Ran Li,et al.Experimental investigation on the effects of narrow junction temperature cycles on die-attach solder layer in an IGBT module[J].IEEE Transactions on Power Electronics,2017,32(2):1431-1441.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700