用户名: 密码: 验证码:
模拟气候变暖和氮沉降对两种来源加拿大一枝黄花叶性状和性状谱的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Simulated climate warming and nitrogen deposition influence leaf traits and leaf trait spectrum in Solidago canadensis from China and North America
  • 作者:周晓慧 ; 彭培好 ; 李景吉
  • 英文作者:ZHOU Xiaohui;PENG Peihao;LI Jingji;Chengdu University of Technology, Ecological Resources and Landscape Architecture Institute;State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology;State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology;Chengdu University of Technology, College of Environment and Ecology;
  • 关键词:气候变暖 ; 叶性状 ; 性状谱 ; 氮沉降 ; 加拿大一枝黄花
  • 英文关键词:climate warming;;leaf traits;;leaf trait spectrum;;N addition;;Solidago canadensis
  • 中文刊名:STXB
  • 英文刊名:Acta Ecologica Sinica
  • 机构:成都理工大学生态资源与景观研究所;地质灾害防治与地质环境保护国家重点实验室(成都理工大学);国家环境保护水土污染协同控制与联合修复重点实验室;成都理工大学环境学院;
  • 出版日期:2019-03-08
  • 出版单位:生态学报
  • 年:2019
  • 期:v.39
  • 基金:国家自然科学青年基金项目(41501060)
  • 语种:中文;
  • 页:STXB201905012
  • 页数:11
  • CN:05
  • ISSN:11-2031/Q
  • 分类号:125-135
摘要
温度是影响植物生长的关键因子,氮是限制植物生长和光合作用的重要资源,两者对入侵植物的功能性状可能产生重要影响。为预测气候变暖和大气氮沉降背景下入侵植物的入侵性,以中国来源和北美来源的加拿大一枝黄花为入侵种,设置2℃增温和氮添加处理,研究了来源、增温和加氮对加拿大一枝黄花叶性状(叶绿素含量、叶面积和叶干物质含量)和性状谱的影响。结果表明:加拿大一枝黄花其中国来源比北美来源具有更低的叶干物质含量;2℃增温显著增大叶面积;加氮显著提高叶绿素含量;来源与增温的交互作用对叶面积影响显著。中国来源的加拿大一枝黄花叶面积与叶干物质含量呈显著负相关关系,增温使叶面积与叶绿素含量呈显著正相关关系,加氮使叶面积与叶绿素含量、叶面积与叶干物质含量分别呈显著正相关和显著负相关关系。由此推知,增温和加氮有可能增强加拿大一枝黄花叶片获取资源的能力,气候变暖和大气氮沉降可能提高加拿大一枝黄花的入侵性。
        Temperature is a key factor that affects plant growth, and nitrogen(N) is an important resource for plant growth and photosynthesis. Changes in temperature and N may strongly influence the functional traits of invasive plants. The aim of this study was to predict the potential invasiveness of invasive plants in response to climate warming and atmospheric N deposition. We conducted a simulated warming and N deposition experiment at Chengdu. In this experiment, we selected Solidago canadensis from China and North America as the focal invader and set up four experimental treatments:(1) ambient,(2) warming(2℃ above the ambient),(3) N addition(4 g N m~(-2) a~(-1) in the form of NH_4NO_3), and(4) warming plus N addition. We determined three leaf traits, leaf chlorophyll content, leaf area, and leaf dry matter content, as well as three relationships among the traits. Our results showed that Solidago canadensis from China had a lower leaf dry matter content than that from North America. Warming increased the leaf area of Solidago canadensis, and N addition increased its chlorophyll content. Sources and warming had significant effects on leaf area. The leaf area of S. canadensis from China decreased significantly with increasing leaf dry matter content. In the warming treatment, the leaf area of S. canadensis was significantly positively correlated with chlorophyll content; in the N addition treatment, the leaf area was significantly positively correlated with chlorophyll content and significantly negatively correlated with leaf dry matter content. These findings suggest that warming and N addition could enhance the ability of S. canadensis leaves to obtain resources. In addition, our results imply that climate warming and atmospheric N deposition may increase the invasion risk of Solidago canadensis.
引文
[1] Ward N L, Masters G J. Linking climate change and species invasion: an illustration using insect herbivores. Global Change Biology, 2007, 13(8): 1605-1615.
    [2] Janssens I A, Dieleman W, Luyssaert S, Subke J A, Reichstein M, Ceulemans R, Ciais P, Dolman A J, Grace J, Matteucci G, Papale D, Piao S L, Schulze E D, Tang J, Law B E. Reduction of forest soil respiration in response to nitrogen deposition. Nature Geoscience, 2010, 3(5): 315-322.
    [3] 闫小玲, 寿海洋, 马金双. 中国外来入侵植物研究现状及存在的问题. 植物分类与资源学报, 2012, 34(3): 287-313.
    [4] Peters R L, Darling J D S. The greenhouse effect and nature reserves: global warming would diminish biological diversity by causing extinctions among reserve species. BioScience, 1985, 35(11): 707-717.
    [5] IPCC. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change//Solomon S, Qin D H, Manning M, Chen Z L, Marquis M, Averyt K B, Tignor M, Miller H L, eds. Climate Change 2007: The Physical Science Basis. Cambridge, UK: Cambridge University Press, 2007.
    [6] Phoenix G K, Hicks W K, Cinderby S, Kuylenstierna J C I, Stock W D, Dentener F J, Giller K E, Austin A T, Lefroy R D B, Gimeno B S, Ashmore M R, Ineson P. Atmospheric nitrogen deposition in world biodiversity hotspots: the need for a greater global perspective in assessing N deposition impacts. Global Change Biology, 2006, 12(3): 470-476.
    [7] Galloway J N, Townsend A R, Erisman J W, Bekunda M, Cai Z C, Freney J R, Martinelli L A, Seitzinger S P, Sutton M A. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science, 2008, 320(5878): 889-892.
    [8] Liu X J, Duan L, Mo J M, Du E Z, Shen J L, Lu X K, Zhang Y, Zhou X B, He C E, Zhang F S. Nitrogen deposition and its ecological impact in china: an overview. Environmental Pollution, 2011, 159(10): 2251-2264.
    [9] Borjigidai A, Hikosaka K, Hirose T. Carbon balance in a monospecific stand of an annual herb Chenopodium album at an elevated CO2 concentration. Plant Ecology, 2009, 203(1): 33-44.
    [10] Alpert P, Bone E, Holzapfel C. Invasiveness, invasibility and the role of environmental stress in the spread of non-native plants. Perspectives in Plant Ecology, Evolution and Systematics, 2000, 3(1): 52-66.
    [11] He W M, Li J J, Peng P H. A congeneric comparison shows that experimental warming enhances the growth of invasive Eupatorium adenophorum. PLoS One, 2012, 7(4): e35681.
    [12] Feng Y L, Lei Y B, Wang R F, Callaway R M, Valiente-Banuet A, Inderjit, Li Y P, Zheng Y L. Evolutionary tradeoffs for nitrogen allocation to photosynthesis versus cell walls in an invasive plant. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(6): 1853-1856.
    [13] Wang G L, Liu F. Carbon allocation of Chinese pine seedlings along a nitrogen addition gradient. Forest Ecology and Management, 2014, 334: 114-121.
    [14] 彭扬. 增温加氮下加拿大一枝黄花生长发育特征比较[D]. 成都: 成都理工大学, 2017: 11-21.
    [15] 彭扬, 彭培好, 李景吉. 模拟氮沉降对矢车菊属植物Centaurea stoebe种群生长和竞争能力的影响. 植物生态学报, 2016, 40(7): 679-685.
    [16] 刘勤, 赖星竹, 李景吉, 彭培好. 模拟气候变暖对不同地区多斑矢车菊形态属性的影响. 西北植物学报, 2011, 31(10): 2078-2083.
    [17] Molina-Montenegro M A, Galleguillos C, Oses R, Acuňa-Rodríguez I S, Lavín P, Gallardo-Cerda J, Torres-Díaz C, Diez B, Pizarro G E, Atala C. Adaptive phenotypic plasticity and competitive ability deployed under a climate change scenario may promote the invasion of Poa annua in Antarctica. Biological Invasions, 2016, 18(3): 603-618.
    [18] 蒋高明, 何维明. 毛乌素沙地若干植物光合作用、蒸腾作用和水分利用效率种间及生境间差异. 植物学报, 1999, 41(10): 1114-1124.
    [19] Vendramini F, Díaz S, Gurvich D E, Wilson P J, Thompson K, Hodgson J G. Leaf traits as indicators of resource-use strategy in floras with succulent species. New Phytologist, 2002, 154(1): 147-157.
    [20] Ordonez A, Olff H. Do alien plant species profit more from high resource supply than natives? A trait-based analysis. Global Ecology and Biogeography, 2013, 22(6): 648-658.
    [21] Reich P B. Cornelissen H. The world-wide ‘fast-slow’ plant economics spectrum: a traits manifesto. Journal of Ecology, 2014, 102(2): 275-301.
    [22] 陈莹婷, 许振柱. 植物叶经济谱的研究进展. 植物生态学报, 2014, 38(10): 1135-1153.
    [23] 沈国辉, 钱振官, 柴晓玲, 陈建生, 管丽琴, 张毓敏. 加拿大一枝黄花的形态特征. 杂草科学, 2004, (4): 50-51.
    [24] 董梅, 陆建忠, 张文驹, 陈家宽, 李博. 加拿大一枝黄花——一种正在迅速扩张的外来入侵植物. 植物分类学报, 2006, 44(1): 72-85.
    [25] 郭水良, 方芳. 入侵植物加拿大一枝黄花对环境的生理适应性研究. 植物生态学报, 2003, 27(1): 47-52.
    [26] Wan S Q, Xia J Y, Liu W X, Niu S L. Photosynthetic overcompensation under nocturnal warming enhances grassland carbon sequestration. Ecology, 2009, 90(10): 2700-2710.
    [27] 任青吉, 李宏林, 卜海燕. 玛曲高寒沼泽化草甸51种植物光合生理和叶片形态特征的比较. 植物生态学报, 2015, 39(6): 593-603.
    [28] 王常顺, 汪诗平. 植物叶片性状对气候变化的响应研究进展. 植物生态学报, 2015, 39(2): 206-216.
    [29] He W M, Sun Z K. Convergent production and tolerance among 107 woody species and divergent production between shrubs and trees. Scientific Reports, 2016, 6: 20485.
    [30] Niinemets ü, Portsmuth A, Tobias M. Leaf size modifies support biomass distribution among stems, petioles and mid-ribs in temperate plants. New Phytologist, 2006, 171(1): 91-104.
    [31] Milla R., & Reich P B. The scaling of leaf area and mass: the cost of light interception increases with leaf size. Proceedings of the Royal Society B: Biological Sciences, 2007, 274(1622): 2109-2115.
    [32] Wilson P J, Thompson K, Hodgson J G. Specific leaf area and leaf dry matter content as alternative predictors of plant strategies. New Phytologist, 1999, 143(1): 155-162.
    [33] Westoby M, Falster D S, Moles A T, Vesk P A, Wright I J. Plant ecological strategies: some leading dimensions of variation between species. Annual Review of Ecology and Systematics, 2002, 33: 125-159.
    [34] García-Plazaola J I, Becerril J M. Photoprotection mechanisms in European beech (Fagus sylvatica L.) seedlings from diverse climatic origins. Trees, 2000, 14(6): 339-343.
    [35] Gamon J A, Surfus J S. Assessing leaf pigment content and activity with a reflectometer. New Phytologist, 1999, 143(1): 105-117.
    [36] 张万灵, 肖宜安, 闫小红, 张斯斯, 黄海裙, 刘保兵. 模拟增温对入侵植物北美车前生长及繁殖投资的影响. 生态学杂志, 2013, 32(11): 2959-2965.
    [37] Xian J R, Chen G P, Liu Y Z, Xu X X, Yang Z B, Yang W Q. Positive adaptation of Salix eriostachya to warming in the treeline ecotone, East Tibetan Plateau. Journal of Mountain Science, 2017, 14(2): 346-355.
    [38] Wang J C, Duan B L, Zhang Y B. Effects of experimental warming on growth, biomass allocation, and needle chemistry of Abies faxoniana in even-aged monospecific stands. Plant Ecology, 2012, 213(1): 47-55.
    [39] Levis S, Bonan G B. Simulating springtime temperature patterns in the community atmosphere model coupled to the community land model using prognostic leaf area. Journal of Climate, 2004, 17(23): 4531-4540.
    [40] Elser J J, Bracken M E S, Cleland E E, Gruner D S, Harpole W S, Hillebrand H, Ngai J T, Seabloom E W, Shurin J B, Smith J E. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters, 2007, 10(12): 1135-1142.
    [41] 张云海, 何念鹏, 张光明, 黄建辉, 韩兴国. 氮沉降强度和频率对羊草叶绿素含量的影响. 生态学报, 2013, 33(21): 6786-6794.
    [42] Ochoa-Hueso R, Manrique E. Effects of nitrogen deposition on growth and physiology of Pleurochaete squarrosa (Brid.) Lindb., a Terricolous moss from Mediterranean ecosystems. Water, Air, & Soil Pollution, 2013, 224(4): 1492-1492.
    [43] Mao Q G, Lu X K, Mo H, Gundersen P, Mo J M. Effects of simulated N deposition on foliar nutrient status, N metabolism and photosynthetic capacity of three dominant understory plant species in a mature tropical forest. Science of the Total Environment, 2018, 610-611: 555-562.
    [44] Sardans J, Alonso R, Janssens I A, Carnicer J, Vereseglou S, Rillig M C, Fernández-Martínez M, Sanders T G M, Peňuelas J. Foliar and soil concentrations and stoichiometry of nitrogen and phosphorous across European Pinus sylvestris forests: relationships with climate, N deposition and tree growth. Functional Ecology, 2016, 30(5): 676-689.
    [45] Quan X K, Wang C K. Acclimation and adaptation of leaf photosynthesis, respiration and phenology to climate change: a 30-year Larix gmelinii common-garden experiment. Forest Ecology and Management, 2018, 411: 166-175.
    [46] Lee T D, Reich P B, Bolstad P V. Acclimation of leaf respiration to temperature is rapid and related to specific leaf area, soluble sugars and leaf nitrogen across three temperate deciduous tree species. Functional Ecology, 2005, 19(4): 640-647.
    [47] Drake J E, Aspinwall M J, Pfautsch S, Rymer P D, Reich P B, Smith R A, Crous K Y, Tissue D T, Ghannoum O, Tjoelker M G. The capacity to cope with climate warming declines from temperate to tropical latitudes in two widely distributed Eucalyptus species. Global Change Biology, 2015, 21(1): 459-472.
    [48] Reich P B, Oleksyn J, Tjoelker M G. Needle respiration and nitrogen concentration in Scots Pine populations from a broad latitudinal range: a common garden test with field-grown trees. Functional Ecology, 1996, 10(6): 768-776.
    [49] Wright I J, Reich P B, Westoby M, Ackerly D D, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen J H C, Diemer M, Flexas J, Garnier E, Groom P K, Gulias J, Hikosaka K, Lamont B B, Lee T, Lee W, Lusk C, Midgley J J, Navas M L, Niinemets ü, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov V I, Roumet C, Thomas S C, Tjoelker M G, Veneklaas E J, Villar R. The worldwide leaf economics spectrum. Nature, 2004, 428(6985): 821-827.
    [50] Poorter L, Bongers F. Leaf traits are good predictors of plant performance across 53 rain forest species. Ecology, 2006, 87(7): 1733-1743.
    [51] Reich P B, Ellsworth D S, Walters M B, Vose J M, Gresham C, Volin J C, Bowman W D. Generality of leaf trait relationships: a test across six biomes. Ecology, 1999, 80(6): 1955-1969.
    [52] Shipley B, Vu T T. Dry matter content as a measure of dry matter concentration in plants and their parts. New Phytologist, 2002, 153(2): 359-364.
    [53] Schmidtling R C. Use of provenance tests to predict response to climate change: loblolly pine and Norway spruce. Tree Physiology, 1994, 14(7/9): 805-817.
    [54] van Kleunen M, Schmid B. No evidence for an evolutionary increased competitive ability in an invasive plant. Ecology, 2003, 84(11): 2816-2823.
    [55] 冯玉龙, 廖志勇, 张茹, 郑玉龙, 李扬苹, 类延宝. 外来入侵植物对环境梯度和天敌逃逸的适应进化. 生物多样性, 2009, 17(4): 340-352.
    [56] Hudson J M G, Henry G H R, Cornwell W K. Taller and larger: shifts in Arctic tundra leaf traits after 16 years of experimental warming. Global Change Biology, 2011, 17(2): 1013-1021.
    [57] 高聚林, 赵涛, 王志刚, 郭改玲, 范磊. 高丹草水分利用效率与叶片生理特性的关系. 作物学报, 2007, 33(3): 455-460.
    [58] Sastry A, Barua D. Leaf thermotolerance in tropical trees from a seasonally dry climate varies along the slow-fast resource acquisition spectrum. Scientific Reports, 2017, 7(1): 11246-11246.
    [59] 王萌, 徐冰, 张大勇, 朱璧如. 内蒙古克氏针茅草地主要植物叶片功能性状对氮素添加的响应. 北京师范大学学报: 自然科学版, 2016, 52(1): 32-38.
    [60] Zhang H X, Li W B, Adams H D, Wang A Z, Wu J B, Jin C J, Guan D X, Yuan F H. Responses of woody plant functional traits to nitrogen addition: a meta-analysis of leaf economics, gas exchange, and hydraulic traits. Frontiers in Plant Science, 2018, 9: 683-683.
    [61] 王庆伟, 于大炮, 代力民, 周莉, 周旺明, 齐光, 齐麟, 叶雨静. 全球气候变化下植物水分利用效率研究进展. 应用生态学报, 2010, 21(12): 3255-3265.
    [62] Liu H Y, Li Y, Ren F, Lin L, Zhu W Y, He J S, Niu K C. Trait-abundance relation in response to nutrient addition in a Tibetan alpine meadow: the importance of species trade-off in resource conservation and acquisition. Ecology and Evolution, 2017, 7(24): 10575-10581.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700