用户名: 密码: 验证码:
海底行走机构液压系统控制策略分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Control Strategy Analysis of the Hydraulic System in Deep-sea Stepping Mechanism
  • 作者:耿向华
  • 英文作者:GENG Xianghua;Department of Information Engineering,Zhengzhou Tourism College;
  • 关键词:海底行走机构 ; 液压系统 ; 灰色预测 ; 模糊PID控制 ; 模糊自适应控制
  • 英文关键词:Deep-sea stepping wheel;;Hydraulic system;;Grey prediction;;Fuzzy PID control;;Fuzzy adaptive control
  • 中文刊名:JCYY
  • 英文刊名:Machine Tool & Hydraulics
  • 机构:郑州旅游职业学院信息工程系;
  • 出版日期:2018-10-28
  • 出版单位:机床与液压
  • 年:2018
  • 期:v.46;No.470
  • 基金:河南省自然科学基金资助项目(132300410373)
  • 语种:中文;
  • 页:JCYY201820039
  • 页数:8
  • CN:20
  • ISSN:44-1259/TH
  • 分类号:165-172
摘要
海底行走机构对海底矿产开采具有重要意义,针对深海底行走机构所需要解决的控制问题主要是速度同步、抗负载慢变干扰和随即干扰。构建行走机构液压系统,根据系统设计参数,建立各个环节的数学模型,进行仿真分析,并以此为基础搭建系统的软件仿真实验平台。为了实现速度同步控制和抗干扰控制,综合灰色预测控制、数据驱动建模控制、模糊控制、常规PID等控制技术,分别对轮边马达子系统和变量泵-轮边马达系统提出了"灰色预测模糊PID控制"和"多模型参考模糊自适应控制"的算法,并在软件仿真平台上进行仿真实验以验证这些算法的有效性。根据二阶参考特征模型的特点,将多参考模型、模糊控制与小误差范围内的常规PI控制相结合,通过对系统在不同误差范围内多模型的控制补偿,能够使系统在参考模型的引导之下较好地达到预期的控制目标。
        Deep seabed contains abundant mineral resource. Research of the deep-sea stepping mechanism has important significance. The main control problems to be solved for the deep-sea stepping mechanism are speed synchronization,anti-load slow change interference and random interference. The hydraulic system was designed. According to design parameter,the mathematical model of per segment was built and the simulation analysis was carried out. The simulation experiment flat was established based on these models. To realize the speed synchronization control and anti-interference control,various control algorithms were combined,such as grey prediction control,data drive model,fuzzy control,conventional PID control and so on. Some algorithms were presented. The grey prediction fuzzy control was designed to the wheel motor subsystem. Fuzzy adaptive algorithm based on multi-model was designed to the variable pump-wheel motor system. Simulation experiments were carried out under the software simulation platform to verify the effectiveness of these algorithms. According to the characteristics of the second-order reference feature model,the combination of the multireference model,fuzzy control and the conventional PI control within a small error range,through the control compensation of the multi-model in different error range,the system can achieve the expected control target better under the guidance of the reference model.
引文
[1]张文峰.工程机械液压系统动力控制技术研究综述[J].时代农机,2015,42(10):29-30.ZHANG W F. Research on Power Control Technology of Hydraulic System for Engineering Machinery[J]. Times Agricultural Machinery,2015,42(10):29-30.
    [2]乔桂玲,张文明,薛山,等.深海行走机构灰色预测:模糊PID速度控制[J].煤炭学报,2009,34(11):1550-1553.QIAO G L,ZHANG W M,XUE S,et al. Speed Control Based on Fuzzy PID Control with Grey Prediction in the Deep Sea Stepping System[J].Journal of China Coal Society,2009,34(11):1550-1553.
    [3]乔桂玲,孟庆波,张文明,等.基于MATLAB的深海行走机构液压系统建模及仿真研究[J].煤矿机械,2009,30(4):49-51.QIAO G L,MENG Q B,ZHANG W M,et al.Modeling and Dynamic Simulation Analysis of Deep Sea Stepping Hydraulic Control System Based on MATLAB Software[J].Coal Mine Machinery,2009,30(4):49-51.
    [4]卢红影,姜继海,王頔.基于模糊自适应PID控制策略的液压变压器驱动直线负载系统研究[J].机床与液压,2009,37(1):58-61.LU H Y,JIANG J H,WANG D.Study on Hydraulic Transformer Driving Linear Load System Based on Fuzzy Tuning PID Control Strategy[J]. Machine Tool&Hydraulics,2009,37(1):58-61.
    [5]QIAO G L,LI Y,YANG Z.Fuzzy Control with Phase Planereference-models and its Application in the Deep Sea Stepping Hydraulic Control System[C]//International Conference on Consumer Electronics,Communications and Networks,2012:338-341.
    [6]路芳,周知进,吴健兴.基于AMESim的挖掘机行走液压系统仿真研究[J].机床与液压,2016,44(5):154-157.LU F,ZHOU Z J,WU J X.Simulate and Research of Walking Hydraulic System of Excavator Based on AMESim[J].Machine Tool&Hydraulics,2016,44(5):154-157.
    [7]郭红霞,王雄.重载爬壁吸附行走机构的设计与研究[J].控制工程,2015,22(2):356-359.GUO H X,WANG X. Research and Design on Magnetic Adhesion Mechanism with Heavy Load[J]. Control Engineering of China,2015,22(2):356-359.
    [8]乔桂玲.海底行走机构液压控制系统的研究[D].北京:北京科技大学,2010.
    [9]姜勇,冯雅丽,张文明,等.深海复合轮式行走机构的设计[J].机械制造,2011,49(10):4-6.JIANG Y,FENG Y L,ZHANG W M,et al.Design of Deepsea Composite Wheel-type Traveling Organization[J].Machinery,2011,49(10):4-6.
    [10]陈轶辉,李洪星.深海行星轮式采矿车液压驱动系统建模分析[J].机械设计与制造,2016(7):252-256.CHEN Y H,LI H X. Modeling and Analysis of Hydraulic Drive System of Deep Sea Vehicle[J].Machinery Design&Manufacture,2016(7):252-256.
    [11]姜勇.基于AMESim的复合轮式海底车液压驱动系统建模与仿真[J].机床与液压,2012,40(13):140-142.JIANG Y.Modeling and Simulation of Composite Wheeled Submarine Vehicle’s Hydraulic Driving System Based on AMESim[J].Machine Tool&Hydraulics,2012,40(13):140-142.
    [12]MATSUNAGA T,TANAKA T,NISHIMURA S.Analysis of Self-excited Vibration in Hydraulic Power Steering System:Prevention Against Vibration by Supply Line[C]//SAE World Congress,2001:97-100.
    [13]王海飞,丘铭军,樊卫平.工程车辆液压行走驱动系统模糊自适应PID控制策略研究[J].筑路机械与施工机械化,2005,22(9):39-41.WANG H F,QIU M J,FAN W P.Research on Hydrostatic Driving Vehicle with Fuzzy Adaptive PID Controlling[J].Road Machinery&Construction Mechanization,2005,22(9):39-41.
    [14]孔德美,李涛,东权.大型工程机械车辆液压回转运动分析与研究[J].液压与气动,2015(12):117-120.KONG D M,LI T,DONG Q.The Analysis and Research of Hydraulics Rotary Motion for Large Engineering Machinery Vehicles[J]. Chinese Hydraulics&Pneumatics,2015(12):117-120.
    [15] NISHIMURA S,MATSUNAGA T. Analysis of Response Lag in Hydraulic Power Steering System[J]. JSAE Review,2000,21(1):41-46.
    [16]王志武.掘进机行走机构液压系统液压冲击的分析与处理[J].机床与液压,2013,41(4):108-109.
    [17]穆顷,王茁,黄新禹,等.海底管道悬跨处理灌浆袋装置液压托举机构设计与实验[J].机床与液压,2016,44(23):15-19.MU Q,WANG Z,HUANG X Y,et al. Design and Experiment of Hydraulic Lift Mechanism in Grouting Bags Device for Filling Submarine Pipeline of Free Span[J].Machine Tool&Hydraulics,2016,44(23):15-19.
    [18] YUAN Q H,XIE B. Modeling and Simulation of a Hydraulic Steering System[J].SAE International Journal of Commercial Vehicles,2008,1(1):488-494.
    [19]钱立军,胡伟龙,邱利宏,等.多轴车辆第三轴电控液压转向系统及其PID控制[J].中国机械工程,2015,26(22):3008-3013.QIAN L J,HU W L,QIU L H,et al. Electronic Hydraulic Steering System and Its PID Controller Applied to Third Axle of Multi-axle Vehicles[J]. China Mechanical Engineering,2015,26(22):3008-3013.
    [20] ZHANG N,WANG M. Dynamic Modeling of Hydraulic Power Steering System with Variable Ratio Rack and Pinion Gear[J]. JSME International Journal,2005,48(2):251-260.
    [21]赵海芳.CWT100伸缩臂履带起重机行走机构液压系统设计[J].机床与液压,2013,41(14):80-82.ZHAO H F. Design of Hydraulic System for Walking Mechanism of CWT1O0 Telescopic Crawler Crane[J].Machine Tool&Hydraulics,2013,41(14):80-82.
    [22]柳玉龙.新型车辆液压行驶驱动控制系统的研究[J].液压与气动,2013(6):32-33.LIU Y L.Research of Control System for New Type Vehicle Hydraulic Driving[J].Chinese Hydraulics&Pneumatics,2013(6):32-33.
    [23]SHEN W,JIANG J,SU X,et al.Control Strategy Analysis of the Hydraulic Hybrid Excavator[J]. Journal of the Franklin Institute,2015,352(2):541-561.
    [24]付骞.基于自整定模糊PID的多电机同步控制研究[J].自动化与仪器仪表,2014(10):1-2.FU Q.Fuzzy Self-tuning PID-based Multi-motor Synchronization Control Study[J]. Automation&Instrumentation,2014(10):1-2.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700