用户名: 密码: 验证码:
考虑需求侧协同响应的热电联供微网多目标规划
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Multi-objective planning for combined heat and power microgrid considering demand side cooperative response
  • 作者:刘辉 ; 刘强 ; 张立 ; 周中锋
  • 英文作者:LIU Hui;LIU Qiang;ZHANG Li;ZHOU Zhongfeng;Hebei Ji-Yan Energy Science and Technology Research Institute Company;
  • 关键词:CHP型微网 ; 需求侧热电协同响应 ; 多目标规划 ; 碳排放 ; 混合整数线性规划
  • 英文关键词:combined heat and power microgrid;;demand side thermal and electric cooperative response;;multi-objective programming;;carbon emission;;MILP
  • 中文刊名:JDQW
  • 英文刊名:Power System Protection and Control
  • 机构:河北冀研能源科学技术研究院有限公司;
  • 出版日期:2019-03-07 09:31
  • 出版单位:电力系统保护与控制
  • 年:2019
  • 期:v.47;No.527
  • 基金:河北省科技厅基金项目资助(0254528D)~~
  • 语种:中文;
  • 页:JDQW201905006
  • 页数:9
  • CN:05
  • ISSN:41-1401/TM
  • 分类号:51-59
摘要
热电联供(Combined Heat and Power, CHP)型微网集成了多种分布式能源,能源利用率较高,具有光明的应用前景。科学合理的系统规划是CHP型微网经济、高效运行的基础。基于此提出考虑需求侧热、电协同响应的CHP型微网多目标规划方法,规划目标兼顾经济指标和碳排放指标。需求侧热电协同响应模型基于建筑物和热水箱的热力学特性,同时考虑可转移电负荷的调度,从而建立基于需求侧协同响应的CHP型微网多目标混合整数线性规划模型。以居民区CHP型微网规划为例进行算例仿真,验证了方法的有效性。结果表明,应用需求侧热电协同响应可降低CHP型微网所需配置的燃气锅炉和储热罐容量,使系统综合成本明显降低。
        Combined Heat and Power(CHP) microgrid integrates a variety of distributed energy sources and has high energy utilization rate, which brings it bright application prospects. Scientific and rational system planning is the foundation of economical and efficient operation of CHP microgrid. On this basis, a multi-objective planning method for CHP microgrid is proposed which considers demand side thermal and electric cooperative response. The objective function takes into account both economic and carbon emission. The demand side thermal and electric cooperative response model is based on the thermodynamic characteristics of buildings and hot water tank, and integrates the shiftable electrical load. A multi-objective Mixed Integer Linear Programming(MILP) model for CHP microgrid planning based on demand side cooperative response is proposed. The simulation is carried out on a residential CHP microgrid planning to validate the effectiveness of the model. The results show that the application of the demand side thermal and electrical cooperative response lowers the capacities of the gas boiler and the thermal storage tank required in the CHP microgrid,and reduces the overall cost obviously.
引文
[1]许丹,丁强,黄国栋,等.考虑电网调峰的热电联产热负荷动态调度模型[J].电力系统保护与控制,2017,45(11):59-64.XU Dan,DING Qiang,HUANG Guodong,et al.Cogeneration unit dynamic scheduling model considering peak-load regulation ability[J].Power System Protection and Control,2017,45(11):59-64.
    [2]宋卓然,赵琳,张子信,等.热电联产与风电机组联合运行滚动优化调度模型[J].电力系统保护与控制,2016,44(24):110-116.SONG Zhuoran,ZHAO Lin,ZHANG Zixin,et al.Rolling optimal model for multiple heating source and wind turbine unit[J].Power System Protection and Control,2016,44(24):110-116.
    [3]任洪波,吴琼.分布式热电联产系统设计优化研究进展[J].热力发电,2017,46(1):11-16.REN Hongbo,WU Qiong.Design optimization for distributed combined heat and power cogeneration systems:research progress[J].Thermal Power Generation,2017,46(1):11-16.
    [4]胡康,陈群.电-热综合能源系统整体能效及灵活性改造方案分析[J].热力发电,2018,47(5):14-21.HU Kang,CHEN Qun.Overall energy efficiency and flexibility retrofit scheme analysis of heat-power integrated energy system[J].Thermal Power Generation,2018,47(5):14-21.
    [5]陈洁,杨秀,朱兰,等.基于遗传算法的热电联产型微网经济运行优化[J].电力系统保护与控制,2013,41(8):7-15.CHEN Jie,YANG Xiu,ZHU Lan,et al.Genetic algorithm based economic operation optimization of a combined heat and power microgrid[J].Power System Protection and Control,2013,41(8):7-15.
    [6]杨秀,陈洁,朱兰,等.基于经济调度的微网储能优化配置[J].电力系统保护与控制,2013,41(1):53-60.YANG Xiu,CHEN Jie,ZHU Lan,et al.Optimization allocation of energy storage for microgrid based on economic dispatch[J].Power System Protection and Control,2013,41(1):53-60.
    [7]白学祥,曾鸣,李源非,等.区域能源供给网络热电协同规划模型与算法[J].电力系统保护与控制,2017,45(5):65-72.BAI Xuexiang,ZENG Ming,LI Yuanfei,et al.The model and algorithm of thermoelectric collaborative planning of regional energy supply network[J].Power System Protection and Control,2017,45(5):65-72.
    [8]顾伟,陆帅,王珺,等.多区域综合能源系统热网建模及系统运行优化[J].中国电机工程学报,2017,37(5):1305-1316.GU Wei,LU Shuai,WANG Jun,et al.Modeling of the heating network for multi-district integrated energy system and its operation optimization[J].Proceedings of the CSEE,2017,37(5):1305-1316.
    [9]王珺,顾伟,张成龙,等.智能社区综合能源优化管理研究[J].电力系统保护与控制,2017,45(1):89-97.WANG Jun,GU Wei,ZHANG Chenglong,et al.Research on integrated energy management for smart community[J].Power System Protection and Control,2017,45(1):89-97.
    [10]LI L,MU H,GAO W,et al.Optimization and analysis of CCHP system based on energy loads coupling of residential and office buildings[J].Applied Energy,2014,136:206-216.
    [11]SEIJO S,DEL CAMPO I,ECHANOBE J,et al.Modeling and multi-objective optimization of a complex CHP process[J].Applied Energy,2016,161:309-319.
    [12]URIS M,LINARES J I,ARENAS E.Size optimization of a biomass-fired cogeneration plant CHP/CCHP(combined heat and power/combined heat,cooling and power)based on Organic Rankine Cycle for a district network in Spain[J].Energy,2015,88:935-945.
    [13]GUO L,LIU W,CAI J,et al.A two-stage optimal planning and design method for combined cooling,heat and power microgrid system[J].Energy Conversion and Management,2013,74(10):433-445.
    [14]ZHOU Z,ZHANG J,LIU P,et al.A two-stage stochastic programming model for the optimal design of distributed energy systems[J].Applied Energy,2013,103:135-144.
    [15]WANG H,YIN W,ABDOLLAHI E,et al.Modelling and optimization of CHP based district heating system with renewable energy production and energy storage[J].Applied Energy,2015,159:401-421.
    [16]魏大钧,孙波,赵峰,等.小型生物质沼气冷热电联供系统多目标优化设计与运行分析[J].电力系统自动化,2015,39(12):7-12.WEI Dajun,SUN Bo,ZHAO Feng,et al.Multi-objective optimization design and operation analysis of a small biomass biogas combined cooling heating and power system[J].Automation of Electric Power Systems,2015,39(12):7-12.
    [17]蒋润花,曾蓉,李洪强,等.考虑气候条件及建筑类型等因素的分布式冷热电三联产系统的多目标优化及评估[J].中国电机工程学报,2016,36(12):3206-3214.JIANG Runhua,ZENG Rong,LI Hongqiang,et al.Multi-objective optimization and evaluation of distributed CCHP system considering influence of climate condition and building type[J].Proceedings of the CSEE,2016,36(12):3206-3214.
    [18]ZHANG D,EVANGELISTI S,LETTIERI P,et al.Optimal design of CHP-based microgrids:multiobjective optimization and life cycle assessment[J].Energy,2015,85:181-193.
    [19]PIRKANDI J,JOKAR M A,SAMETI M,et al.Simulation and multi-objective optimization of a combined heat and power(CHP)system integrated with low-energy buildings[J].Journal of Building Engineering,2016,5:13-23.
    [20]TASDIGHI M,GHASEMI H,RAHIMI-KIAN A.Residential microgrid scheduling based on smart meters data and temperature dependent thermal load modeling[J].IEEE Transactions on Smart Grid,2014,5(1):349-357.
    [21]张冲,胡林献,胡佳.热电机组比重及热负荷对风电消纳率影响的研究[J].电力系统保护与控制,2013,41(23):120-125.ZHANG Chong,HU Linxian,HU Jia.Research on the impact of the proportion of thermal power generating units and heat load on the wind power accommodation rate[J].Power System Protection and Control,2013,41(23):120-125.
    [22]MIN J K,SONG H Y,PARK J B,et al.Optimization of CHP and thermal storage under heat demand[C]//201612th IEEE International Conference on Control and Automation(ICCA),June 1-3,2016,Kathmandu,Nepal:277-281.
    [23]BRAHMAN F,HONARMAND M,JADID S.Optimal electrical and thermal energy management of a residential energy hub,integrating demand response and energy storage system[J].Energy and Buildings,2015,90:65-75.
    [24]AHMADI P,ALMASI A,SHAHRIYARI M,et al.Multi-objective optimization of a combined heat and power(CHP)system for heating purpose in a paper mill using evolutionary algorithm[J].International Journal of Energy Research,2012,36(1):46-63.
    [25]GLAVAN I,PRELEC Z,PAVKOVIC B.Modelling,simulation and optimization of small-scale CCHP energy systems[J].International Journal of Simulation Modelling,2015,14(4):683-696.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700