用户名: 密码: 验证码:
热源井填砾抽灌同井流/热贯通及温度锋面运移数值模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical simulation on flow/thermal transfixion and temperature front migration of thermal well of pumping & recharging well filled with gravel
  • 作者:宋伟 ; 刘远周 ; 郑湍峰 ; 刘晓秀
  • 英文作者:Song Wei;Liu Yuanzhou;Zheng Tuanfeng;Liu Xiaoxiu;School of Civil Engineering,North China University of Technology;
  • 关键词: ; 温度 ; 速度 ; 填砾抽灌同井 ; 流贯通强度 ; 热贯通 ; 温度锋面 ; 数值模拟
  • 英文关键词:well;;temperature;;velocity;;pumping & recharging well filled with gravel;;flow transfixion strength;;thermal transfixion;;temperature front;;numerical simulation
  • 中文刊名:NYGU
  • 英文刊名:Transactions of the Chinese Society of Agricultural Engineering
  • 机构:北方工业大学土木工程学院;
  • 出版日期:2018-12-23
  • 出版单位:农业工程学报
  • 年:2018
  • 期:v.34;No.352
  • 基金:国家自然科学基金资助项目(41602278);; 中国博士后科学基金资助项目(2016M601129);; 供热供燃气通风及空调工程北京市重点实验室研究基金资助课题(NR2016K03);; 北方工业大学青年拔尖人才培育计划资助项目(XN018032);北方工业大学青年毓杰人才计划资助项目(18XN154-006)
  • 语种:中文;
  • 页:NYGU201824025
  • 页数:7
  • CN:24
  • ISSN:11-2047/S
  • 分类号:218-224
摘要
针对填砾抽灌同井流贯通、热贯通及温度锋面运移研究的不足,该文在已验证的数值模型中建立监测点、线、面和体对以上问题进行量化分析,并将热源井回水经过回填砾石直接流入抽水管的流量占总回水流量的百分比定义为流贯通强度。研究结果表明,填砾抽灌同井回水进入含水层后的流速可以用某一方向的分速度代替;该模型中的流贯通强度为1.2%,热贯通发生与完全形成的时间分别为模型运行2.5和12 min,抽水温度变化较剧烈的时刻与热贯通形成发展的时刻基本一致。在地下水渗流速度大于1×10~(-3)m/s的区域,速度锋面运移较温度锋面运移快;反之,温度锋面运移快于速度锋面运移。通过对填砾抽灌同井流贯通、热贯通及温度锋面运移的量化分析,为进一步探索填砾抽灌同井最优运行策略和更高换热效率提供了理论基础。
        The system of pumping & recharging well filled with gravel(PRWFG) is a specific type of the single thermal well used as ground heat exchanger. The heat efficiency of PRWFG is higher than that of the standing column well(SCW) or the traditional pumping & recharging well(PRW). The inlet water of the PRWFG converges and seeps toward the thermal well both horizontally and longitudinally as combined impacts of the positive recharging pressure, the negative pumping pressure and the gravity. During the procedure of seepage, the heat transfers between the inlet water and the water/solids in the aquifer via conduction, convection and thermal dispersion. The amount of heat transferred directly affects the efficiency and the capacity of the thermal well. Due to the low velocity of underground water, heat conduction occurs between the fluid and the solids, as well as between the solids. The heat transfer coefficient is relatively stable if there are certain hydrogeological conditions. Heat convection and thermal dispersion occur in the pores among the solids and the heat transfer coefficients depend on the flow rate of groundwater. A small amount of inlet water enters the outlet water pipe after heat exchanged with the gravel zone and the wall of the thermal well. Considering the facts that normally the porosity of the gravel zone is larger than that of the aquifer, the pressure difference between inlet and outlet water pipes is high and the distance between them is short, flow transfixion is more commonly happened in the thermal well than in the aquifer. Flow transfixion is a process that the inlet water in the thermal well enters the outlet water pipe through the gravel zone and the zone near the wellbore. The flow transfixion leads to a thermal transfixion by mixing water at different temperatures and mixed flow moves to the outlet water pipe. The formation of flow/thermal transfixion reduces the heat transfer efficiency and load-carrying capacity of thermal well. Currently, the bleeding strategy is usually used for decreasing flow/thermal transfixion. With the rapid development of computational fluid dynamics, numerical simulation is widely applied to the field of ground source heat pump. However, lots of researches focus on the aspects such as the thermal response radius of the pumping and recharging wells, the effect of groundwater seepage on the ground heat exchangers, and the characteristic of aquifer thermal energy storage. Considering the fact that there is insufficient research to predict the flow/thermal transfixion and the temperature migration of PRWFG, this paper provides a fundamental study in order to better understand the operation mechanism. The dynamic characteristics of PRWFG are quantitatively studied by establishing observation point, lines, surfaces and volumes based on the validated numerical model. The strength of flow transfixion is defined as the portion of the inlet water flow from the thermal well directly enters the outlet-water pipe through the gravel zone. Results show that the resultant velocity of PRWFG inlet water which flows back to the aquifer can be replaced by the component velocity in a specific direction. In this model, the strength of flow transfixion strength is 1.2 %. The time for the thermal transfixion to start and completely developed is 2.5 and 12 minutes respectively for the model running. It is also observed that during the same period when there are severe variations of the outlet water temperature, the thermal transfixion occurs and develops. In the area within 100 mm from the axis of thermal well, where the seepage velocity of groundwater is higher than 1×10-3 m/s, the velocity front migration is faster than the temperature front migration. On the contrary, the temperature front migration is greater than the velocity front migration. The quantitative analysis of flow transfixion, thermal transfixion and temperature front migration of PRWFG will provide a theoretical basis for further exploration of the optimized operation of the PRWFG system with higher efficiency.
引文
[1]倪龙,姜益强,姚杨,等.单井循环地下换热系统健康运行的研究[J].流体机械,2009,37(4):64-68.Ni Long,Jiang Yiqiang,Yao Yang,et al.Study on healthy operation for standing column well ground heat exchange system[J].Fluid Machinery,2009,37(4):64-68.(in Chinese with English abstract)
    [2]宋伟,倪龙,姚杨.单井循环系统在不同初始地温下的特性[J].哈尔滨工程大学学报,2014,35(3):342-346.Song Wei,Ni Long,Yao Yang.Characteristics of single well systems in different initial aquifer temperatures[J].Journal of Harbin Engineering University,2014,35(3):342-346.(in Chinese with English abstract)
    [3]倪龙,马最良,孙丽颖.同井回灌地下水源热泵热力特性分析[J].哈尔滨工程大学学报,2006,27(2):195-199.Ni Long,Ma Zuiliang,Sun Liying.Thermal characteristics of groundwater heat pump with pumping and recharging in the same well[J].Journal of Harbin Engineering University,2006,27(2):195-199.(in Chinese with English abstract)
    [4]孙海洲,武强,徐生恒,等.Stokes-Darcy流耦合的单井循环换热地能采集井热物性研究[J].太阳能学报,2015,36(11):2571-2577.Sun Haizhou,Wu Qiang,Xu Shengheng,et al.Research on thermophysical characteristics with SWGECCHE coupled by Stokes-Darcy flow[J].Acta Energiae Solaris Sinica,2015,36(11):2571-2577.(in Chinese with English abstract)
    [5]倪龙,马最良.热弥散对同井回灌地下水源热泵的影响[J].建筑热能通风空调,2005,24(4):7-10.Ni Long,Ma Zuiliang.The effect of heat dispersion on groundwater heat pump with pumping&recharging in the same well[J].Building Energy&Environment,2005,24(4):7-10.(in Chinese with English abstract)
    [6]Rees S J,Spitler J D,Deng Z,et al.A study of geothermal heat pump and standing column well performance[J].ASHRAE Transactions,2004,110(1):3-13.
    [7]Deng Z,Rees S J,Spitler J D.A model for annual simulation of standing column well ground heat exchangers[J].HVAC&R Research,2005,11(4):637-655.
    [8]Song Wei,Ni Long,Yao Yang.Experimental research on bleeding performance of single well ground-water heat pump[J].Procedia Engineering,2017,205:3162-3169.
    [9]Du Xinqiang,Wang Zijia,Ye Xueyan.Potential clogging and dissolution effects during artificial recharge of groundwater using potable water[J].Water Resources Management,2013,27(10):3573-3583.
    [10]Akhmad Azis,Hamzah Yusuf,Zulfiyah Faisal,et al.Water turbidity impact on discharge decrease of groundwater recharge in recharge reservoir[J].Procedia Engineering,2015,125:199-206.
    [11]胡继华,张延军,于子望,等.水源热泵系统中地下水流贯通及其对温度场的影响[J].吉林大学学报:地球科学版,2008,38(6):992-998.Hu Jihua,Zhang Yanjun,Yu Ziwang,et al.Groundwater flow transfixion of groundwater source heat pump system and its influence on temperature field[J].Journal of Jilin University:Earth Science Edition,2008,38(6):992-998.
    [12]杜丹艳,胡继华,张延军.水源热泵系统含水层中渗流场模拟及其对温度场的影响分析[J].建筑节能,2008,36(8):8-12.Du Danyan,Hu Jihua,Zhang Yanjun.Numerical simulation of seepage flow field of the groundwater source heat pump system and its influence on the temperature field[J].Building Energy Efficiency,2008,36(8):8-12.
    [13]骆祖江,李伟,王琰,等.地下水源热泵系统热平衡模拟三维数值模型[J].农业工程学报,2014,30(2):198-204.Luo Zujiang,Li Wei,Wang Yan,et al.Three-dimensional numerical model for heat balance simulation of ground-water heat pump[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2014,30(2):198-204.(in Chinese with English abstract)
    [14]张远东,魏加华,王光谦.区域流场对含水层采能区地温场的影响[J].清华大学学报:自然科学版,2006,46(9):1518-1521.Zhang Yuandong,Wei Jiahua,Wang Guangqian.Impact of regional groundwater flow on geological temperature field with energy abstraction from the aquifer[J].Journal of Tsinghua University:Science and technology,2006,46(9):1518-1521.(in Chinese with English abstract)
    [15]张远东,魏加华,李宇,等.地下水源热泵采能的水-热耦合数值模拟[J].天津大学学报,2006,39(8):907-912.Zhang Yuandong,Wei Jiahua,Li Yu,et al.Simulation of changes in geo-temperature field due to energy abstraction from underground aquifers[J].Journal of Tianjin University,2006,39(8):907-912.(in Chinese with English abstract)
    [16]刘立才,王理许,丁跃元,等.水源热泵抽灌井布局及其运行过程中地下温度变化[J].水文地质工程地质,2007,34(6):1-5.Liu Licai,Wang Lixu,Ding Yueyuan,et al.Pumping-injection well distribution of groundwater heat pumps and temperature change in its operation process[J].Hydrogeology&Engineering Geology,2007,34(6):1-5.(in Chinese with English abstract)
    [17]王慧玲,王峰,孙保卫,等.地源热泵系统抽灌模式对地下水流场和温度场的影响[J].水文地质工程地质,2009,36(5):133-137.Wang Huiling,Wang Feng,Sun Baowei,et al.Impact of position and production of injection wells on groundwater flow and temperature field with groundwater source heat pump[J].Hydrogeology&Engineering Geology,2009,36(5):133-137.(in Chinese with English abstract)
    [18]Bobo Mingsum Ng,Chris Underwood,Sara Walker.Numerical modelling of multiple standing column wells for heating and cooling buildings[C]//The 11th International IBPSA Conference,Glasgow,Scotland,2009:49-55.
    [19]Bobo Mingsum Ng,Chris Underwood,Sara Walker.Standing column wells-Modeling the potential for applications in geothermal heating and cooling[J].HVAC&RResearch,2011,17(6):1089-1100.
    [20]Al-Sarkhi A,Abu-Nada E,Nijmeh S,et al.Performance evaluation of standing column well for potential application of ground source heat pump in Jordan[J].Energy Conversion and Management,2008,49(4):863-872.
    [21]Abu-Nada E,Akash B,Al-Hinti I,et al.Modeling of a geothermal standing column well[J].International Journal of Energy Research,2010,32(4):306-317.
    [22]李旻,刁乃仁,方肇洪.单井回灌地源热泵地下传热数值模型研究[J].太阳能学报,2007,28(12):1394-1401.Li Min,Diao Nairen,Fang Zhaohong.Study on numerical heat transfer models of standing column well[J].Acta Energiae Solaris Sinica,2007,28(12):1394-1401.(in Chinese with English abstract)
    [23]倪龙,余延顺,姜益强,等.循环单井地下水多流态流动特性[J].南京理工大学学报:自然科学版,2010,34(3):367-371.Ni Long,Yu Yanshun,Jiang Yiqiang,et al.Characteristics of groundwater multi-pattern flow in standing column well[J].Journal of Nanjing University of Science and Technology:Nurture Science,2010,34(3):367-371.(in Chinese with English abstract)
    [24]Ni Long,Li Haorong,Jiang Yiqiang,et al.A model of groundwater seepage and heat transfer for single-well ground source heat pump systems[J].Applied Thermal Engineering,2011,31(14):2622-2630.
    [25]武强,孙海洲,徐生恒,等.基于单井循环浅层地热能开发的数值模拟与分析[J].工程勘察,2015,43(1):45-50.Wu Qiang,Sun Haizhou,Xu Shengheng,et al.Numerical simulation and result analysis on the development of shallow geothermal energy resources based on single well heat circulation[J].Geotechnical Investigation&Surveying,2015,43(1):45-50.(in Chinese with English abstract)
    [26]武强,孙海洲,徐生恒,等.多流场耦合的单井循环换热地能采集井物理场分析[J].太阳能学报,2015,36(12):3015-3022.Wu Qiang,Sun Haizhou,Xu Shengheng,et al.Analysis of physical fields on SWGECCHE coupled with multi-flow field[J].Acta Energiae Solaris Sinica,2015,36(12):3015-3022.(in Chinese with English abstract)
    [27]宋伟,倪龙,姚杨.不同抽回间距的单井循环地下水源热泵系统试验[J].农业工程学报,2014,30(2):205-211.Song Wei,Ni Long,Yao Yang.Experiment on single well groundwater heat pump systems in different distances between pumping and injection screens[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2014,30(2):205-211.(in Chinese with English abstract)
    [28]宋伟,倪龙,姚杨.热源井抽灌同井连续取/放热特性试验[J].农业工程学报,2017,33(11):248-253.Song Wei,Ni Long,Yao Yang.Experiment on characteristics of continuous heat absorption/release for pumping and recharging in same thermal well[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2017,33(11):248-253.(in Chinese with English abstract)
    [29]Viola Somogyi,Viktor Sebestyén,Endre Domokos,et al.Thermal impact assessment with hydrodynamics and transport modeling[J].Energy Conversion and Management,2015,104(10):127-134.
    [30]Zhou Yanzhang,Zhou Zhifang.Simulation of thermal transport in aquifer:A GWHP system in Chengdu,China[J].Journal of Hydrodynamics,2009,21(5):647-657.
    [31]Antonio Capozza,Michele De Carli,Angelo Zarrella.Investigations on the influence of aquifers on the ground temperature in ground-source heat pump operation[J].Applied Energy,2013,107:350-363.
    [32]Zhang Wenke,Yang Hongxing,Guo Xiaoqiang,et al.Investigation on groundwater velocity based on the finite line heat source seepage model[J].International Journal of Heat and Mass Transfer,2016,99:391-401.
    [33]Kastner O,Norden B,Klapperer S,et al.Thermal solar energy storage in Jurassic aquifers in Northeastern Germany:A simulation study[J].Renewable Energy,2017,104:290-306.
    [34]Anibas C,Kukral J,Possemiers M,et al.Assessment of seasonal aquifer thermal energy storage as a groundwater ecosystem service for the Brussels-Capital Region:Combining groundwater flow,and heat and reactive transport modeling[J].Energy Procedia,2016,97:179-185.
    [35]宋伟,朱柯,刘远周.基于CFD的填砾抽灌同井数值模拟[J].可再生能源,2018,36(4):626-632.Song Wei,Zhu Ke,Liu Yuanzhou.Numerical simulation of forced external circulation standing column well based on CFD[J].Renewable Energy Resources,2018,36(4):626-632.(in Chinese with English abstract)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700