用户名: 密码: 验证码:
考虑晶粒分布的多晶体材料超声散射统一理论
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Ultrasonic sacttering unified theory for polycrystal material with grain sizes distribution
  • 作者:李珊 ; 李雄兵 ; 宋永锋 ; 陈超
  • 英文作者:Li Shan;Li Xiong-Bing;Song Yong-Feng;Chen Chao;School of Traffic and Transportation Engineering, Central South University;State Key Laboratory of Powder Metallurgy, Central South University;
  • 关键词:超声散射 ; 统一理论 ; 晶粒尺寸 ; 截断对数正态分布
  • 英文关键词:ultrasonic scattering;;unified theory;;grain size;;truncated log-normal distribution
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:中南大学交通运输工程学院;中南大学粉末冶金国家重点实验室;
  • 出版日期:2018-12-08
  • 出版单位:物理学报
  • 年:2018
  • 期:v.67
  • 基金:国家自然科学基金(批准号:51575541,51711530231);; 中南大学中央高校基本科研业务费(批准号:2018zzts515)资助的课题~~
  • 语种:中文;
  • 页:WLXB201823011
  • 页数:12
  • CN:23
  • ISSN:11-1958/O4
  • 分类号:107-118
摘要
现有超声散射统一理论可通过多晶体材料的微观结构和力学特性,实现全频域范围内衰减和相速度的正演建模,但其忽略晶粒尺寸分布的影响,进而降低了正演模型的计算精度.本文对不均匀介质的波动方程进行二阶Keller近似,用全频域格林函数推导介质中的平均波;以截断对数正态分布描述晶粒分布,构建加权的空间相关函数;结合材料的弹性模量协方差,建立含晶粒分布的超声散射统一理论,揭示晶粒分布对超声散射的影响规律;制备304不锈钢试块并开展超声散射实验.结果表明考虑晶粒分布特性后,纵波衰减谱和相速度谱相对于实验结果的相异性降低约49%和64%,横波衰减谱和相速度谱相对于实验结果的相异性降低约12%和4%.可见,本文的统一理论模型能有效修正晶粒分布导致的衰减谱和相速度谱偏差,为晶粒分布反演评价提供理论基础.
        The existing unified theory of ultrasonic scattering can model the attenuation and phase velocity in the frequency domain by using the microstructure and mechanical properties of polycrystalline materials. However, this theory does not consider the influence of grain size distribution, thus degrading the calculation accuracy in the forward modeling. A new unified theory, which is mainly corrected by considering the grain size distribution, is developed. First, the second-order Keller approximation and the full-field Green's function are used to calculate the wave equation of inhomogeneous medium and derive the average wave in the medium, respectively. Second, the method of the truncated lognormal distribution is used to describe the grain size distribution and construct the weighted spatial correlation function. Finally, the new unified theory of ultrasonic scattering is established to reveal the influence of grain distribution on ultrasonic scattering.Using the new unified model, the effects of the grain distribution widening on the ultrasonic scattering while the average grain size is unchanged, are analyzed for the longitudinal wave and the shear wave. The attenuation increases in the Rayleigh scattering region and the geometric scattering region, while there is less attenuation variation in the stochastic scattering region and two adjacent transition regions. The phase velocity varies strongly in the stochasticgeometric transition region, while the variation is relatively small in other scattering zones. Experiments are conducted by using a 304 stainless steel specimen. The results show that when the grain distribution characteristics are considered,the discrepancy between the longitudinal wave attenuation spectrum and experimental results, and that between the phase velocity spectrum and experimental results are reduced by 49% and 64%, respectively; for the shear wave, these discrepancies are reduced by 12% and 4%, respectively.From all above aspects, the accuracy of the new model is higher than that of the traditional model. The new unified theory proposed in this paper can effectively correct the discrepancy of the attenuation spectrum and phase velocity spectrum caused by the grain size distribution and provide a theoretical basis for inverse problem of grain distribution.Also, the theory can be extended to materials containing elongated grains, macroscopic texture or multiple phases.
引文
[1] Li J, Rokhlin S I 2015 Wave Motion 58 145
    [2] Kube C M 2017 J. Acoust. Soc. Am. 141 1804
    [3] O’Donnell M, Jaynes E T, Miller J G 1978 J. Acoust.Soc. Am. 63 1935
    [4] Mason W P, McSkimin H J 1947 J. Acoust. Soc. Am.19 464
    [5] Mason W P, McSkimin H J 1948 J. Appl. Phys. 19 940
    [6] Huntington H B 1950 J. Acoust. Soc. Am. 22 362
    [7] Papadakis E P 1965 J. Acoust. Soc. Am. 37 703
    [8] Weaver R L 1990 J. Mech. Phys. Solids 38 55
    [9] Calvet M, Margerin L 2012 J. Acoust. Soc. Am. 1311843
    [10] Calvet M, Margerin L 2016 Wave Motion 65 29
    [11] Stanke F E, Kino G S 1984 J. Acoust. Soc. Am. 75 665
    [12] Hirsekorn S 1988 J. Acoust. Soc. Am. 83 1231
    [13] Ahmed S, Thompson R B 1992 Nondestr. Test. Eval. 8525
    [14] Sha G, Rokhlin S I 2018 Ultrasonics 88 84
    [15] Papadakis E P 1964 J. Appl. Phys. 35 1586
    [16] Papadakis E P 1961 J. Acoust. Soc. Am. 33 1616
    [17] Nicoletti D, Anderson A 1997 J. Acoust. Soc. Am. 101686
    [18] Smith R L 1982 Ultrasonics 20 211
    [19] Chen Y, Luo Z B, Zhang D H, Zhou Q, Liu L L, Yang H M, Lin L 2016 J. Mech. Eng. 18 24(in Chinese)[陈尧,罗忠兵,张东辉,周全,刘丽丽,杨会敏,林莉2016机械工程学报18 24]
    [20] Ryzy M, Grabec T, Sedlák P, Veres I A 2018 J. Acoust.Soc. Am. 143 219
    [21] Arguelles A P, Turner J A 2017 J. Acoust. Soc. Am. 1414347
    [22] Bebu I, Mathew T 2009 Stat. Probabil. Lett. 79 375
    [23] Zheng Q, Li J, Huang F 2011 Appl. Math. Comput. 2179592
    [24] Song Y F, Li X B, Shi Y W, Ni P J 2016 Acta Phys.Sin. 65 214301(in Chinese)[宋永锋,李雄兵,史亦韦,倪培君2016物理学报65 214301]
    [25] Schwartz A J, Kumar M, Adams B L, Field D P 2009Electron Backscatter Diffraction in Materials Science(Berlin, Heidelberg:Springer)pp53–81
    [26] Treiber M, Kim J Y, Jacobs L J, Qu J 2009 J. Acoust.Soc. Am. 125 2946

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700