用户名: 密码: 验证码:
浸润线可控型人工湿地的生活污水脱氮除磷性能研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on Nitrogen and Phosphorus Removal from Domestic Sewage by Saturation-Line-Controlling Constructed Wetlands
  • 作者:吴义福 ; 吕锡武 ; 杨子萱
  • 英文作者:WU Yifu;LU Xiwu;YANG Zixuan;School of Energy & Environment, Southeast University;Engineering Research Center Taihu Lake Water Environment;
  • 关键词:潜流人工湿地 ; 脱氮除磷 ; 浸润线 ; 生活污水
  • 英文关键词:subsurface constructed wetlands;;nitrogen and phosphorus removal;;saturation line;;fromdomestic sewage
  • 中文刊名:SCLJ
  • 英文刊名:Technology of Water Treatment
  • 机构:东南大学能源与环境学院;无锡太湖水环境工程研究中心;
  • 出版日期:2017-12-05 13:52
  • 出版单位:水处理技术
  • 年:2017
  • 期:v.43;No.311
  • 基金:“十二五”国家水体污染控制与治理科技重大专项(2012ZX07101-005);; 城郊集约型美丽乡村建设关键技术研究与示范(2015BAL01B01)
  • 语种:中文;
  • 页:SCLJ201712023
  • 页数:6
  • CN:12
  • ISSN:33-1127/P
  • 分类号:94-99
摘要
研究潜流人工湿地经"厌氧-缺氧-生物接触氧化池"生物处理后的生活污水尾水的氮磷去除效果,分析浸润线深度对种植不同植物的湿地单元氮磷去除率的影响。结果表明,低浸润度条件下,种植不同植物的湿地氮磷去除效果普遍较差,增加浸润线深度有利于污水中磷的去除。但就氮的去除而言,对于种植不同种类植物湿地,适宜的浸润线深度条件有所不同:空心菜和水稻根系发达,中浸润线深度条件下脱氮效果最好,而生菜根系相对短浅,高浸润线深度条件有利于其对氮的去除。植物吸收对氮磷去除贡献率分别是17.14%和41.44%,而这也可反映湿地系统氮磷资源化利用率。
        Nitrogen and phosphorus removal efficiency of effluent from domestic sewage treated by subsurface constructed wetlands with 'anaerobic reactoranoxic reactor-biological contact oxidation tank' was studied. And the effect of saturation line on nitrogen and phosphorus removal rate by constructed wetlands with different plants was analyzed. The results showed that, with condition of low saturation line, nitrogen and phosphorus removal efficiency was generally poor, phosphorus removal rate increased with the increase of depth of saturation line. For nitrogen removal, the most suitable condition of saturation line of constructed wetlands with different plants was dissimilar. Water spinach and rice had well-developed root system and best effect with middle depth of saturation line, root of lettuce was relatively short, high saturation line was advantageous to nitrogen removal. The contribution of plants absorption to nitrogen and phosphorus removal was 17.14% and 41.44% respectively, which could reflect utilization rate of nitrogen and phosphorus in wetland system.
引文
[1]武俊梅,王荣,徐栋,等.垂直流人工湿地不同填料长期运行效果研究[J].中国环境科学,2010,30(5):633-638.
    [2]梁继东,周启星,孙铁珩.人工湿地污水处理系统研究及性能改进分析[J].生态学杂志,2003,22(2):49-55.
    [3]袁博.关于农村生活污水处理技术的综合探讨[J].城市建设理论研究(电子版),2011(21).http://d.g.wanfangdata.com.cn/Periodical_csjsllyj2011211892.aspx.
    [4]王超,任勇翔,张海,等.水培技术作为人工湿地预处理工艺可行性研究[J].中国环境科学,2010,30(8):1079-1085.
    [5]CONLEY L M,DICK R I,LION L W.An Assessment of the root zone method of wastewater treatment[J].Research Journal of the Water Pollution Control Federation,1991,63:239-274.
    [6]GREEN B M,UPTON J.Constructed reed beds:a cost-effective way to polish wastewater effluents for small communities[J].Water Environ Res,1994,66(3):188-192.
    [7]聂志丹,年跃刚.金相灿,等.3种类型人工湿地处理富营养化水体中试比较研究[J].环境科学,2007,28(8):1675-1680.
    [8]ALVAREZ J A,RUIZ I,SOTO M.Anaerobic digesters as apretreatment for constructed wetlands[J].Ecological Engineering,2008,33(1):54-67.
    [9]GUNES K,TUNCSIPER B,AYAZ S,et al.The ability of free watersurface constructed wetland system to treat high strength domestic wastewater:a case study for the Mediterranean[J].Ecological Engineering,2012,44(2):278-284.
    [10]国家环境保护总局《水和废水监测分析方法》编委会.水和废水监测分析方法[M].4版.北京:中国环境科学出版社,2002.
    [11]许光辉,郑洪元.土壤微生物分析方法手册[M].北京:农业出版社,1983.
    [12]TANNER C C,KADLEC R H,GIBBS M M,et al.Nitrogen processing gradients in subsurface-flow treatment wetlands-influence of wastewater characteristics[J].Ecological Engineering,2002,18(4):499-520.
    [13]FAN J,ZHANG B,ZHANG J,et al.Intermittent aeration strategy to enhance organics and nitrogen removal in subsurface flow constructed wetlands[J].Bioresource Technology,2013,141:117-122.
    [14]VYMAZAL J.Removal of nutrients in various types of constructed wetlands[J].Science of The Total Environment,2007,380(1/3):48-65.
    [15]李娟英,赵庆祥.低浓度氨氮硝化过程中影响因素的研究[J].环境污染与防治,2006(1):11-13.
    [16]ZHU Tong,SIKORA F J.Ammonium and nitrate removal in vegetatedand unwegetated gravel bed microcosm wetlands[J].Wat Sci Tech,1995,32(3):219-228.
    [17]李志杰,孙井梅,刘宝山.人工湿地脱氮除磷机理及其研究进展[J].工业水处理,2012,32(4):1-5.
    [18]钟成华,李杰,邓春光.人工湿地废水处理中氮、磷去除机理研究[J].土木建筑与环境工程,2008,30(4):141-146.
    [19]PAPADIMITRIOU C A,PAPATHEODOULOU A,TAKAVAKOGLOUV,et al.Investigation of protozoa as indicators of wastewater treatment efficiency in constructed wetlands[J].Desalination,2010,250(1):378-382.
    [20]LIN Y F,JING S R,WANG T W,et al.Effects ofmacrophytes and external carbon sources on nitrate removal fromgroundwater in constructed wetlands[J].Environmental Pollution,2002,119:413-42.
    [21]LIM P E,WONG T F,LIM D V.Oxygen demand,nitrogen and copper removal by free-water-surface and subsurface-flow constructed wetlands under tropical conditions[J].Environment International,2001,26:425-431.
    [22]GOTTSCHALL N,BOUTIN C,CROLLA A,et al.The role of plants in theremoval of nutrients at a constructed wetland treating agricultural(dairy)wastewater,Ontario,Canada[J].Ecol Eng,2007,29(2):154-163.
    [23]郭迎庆,张玉先,李定龙,等.人工湿地生态系统脱氮除磷机理及研究进展[J].给水排水,2009,35(s1):114-118.
    [24]HARVEY O R,RHUE R D.Kinetics and energetics of phosphate sorption in a multi-component Al(III)-Fe(III)hydr(oxide)sorbent system[J].Journal of Colloid and Interface Science,2008,322(2):384-393.
    [25]GRY LYNGSIE,PENN C J,PEDERSEN H L.Modelling of phosphate retention by Ca-and Fe-rich filter materials under flow-through conditions[J].Ecological Engineering,2015,75:93-102.
    [26]熊飞,李文朝,潘继征,等.人工湿地脱氮除磷的效果与机理研究进展[J].湿地科学,2005,3(3):228-234.
    [27]李林锋,年跃刚,蒋高明,等.植物吸收在人工湿地脱氮除磷中的贡献[J].环境科学研究,2009,22(3):337-342.
    [28]城镇污水处理厂污染物排放标准:GB 18918-2002[S].

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700