用户名: 密码: 验证码:
送粉式激光增材制造TC4钛合金熔覆层组织及电化学腐蚀行为的研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Microstructure and Electrochemical Corrosion Behavior of TC4 Titanium Alloy Cladding Layer Prepared with Powder Feeding Laser Additive Manufacturing
  • 作者:冯晓甜 ; 顾宏 ; 周圣丰 ; 雷剑波
  • 英文作者:Feng Xiaotian;Gu Hong;Zhou Shengfeng;Lei Jianbo;Laser Technology Institute, Tianjin Polytechnic University;
  • 关键词:激光技术 ; 激光增材制造技术 ; TC4钛合金 ; 电化学腐蚀 ; 硫酸
  • 英文关键词:laser technique;;laser additive manufacturing technology;;TC4 titanium alloy;;electrochemical corrosion;;sulfuric acid
  • 中文刊名:JJZZ
  • 英文刊名:Chinese Journal of Lasers
  • 机构:天津工业大学激光技术研究所;
  • 出版日期:2018-12-03 16:12
  • 出版单位:中国激光
  • 年:2019
  • 期:v.46;No.507
  • 基金:国家自然科学基金(61475117,51471084);; 国家重点研发计划(2016YFB1100501,2017YFB1103604);; 天津市青年拔尖人才项目(TJTZJH-QNBJRC-2-15)
  • 语种:中文;
  • 页:JJZZ201903005
  • 页数:10
  • CN:03
  • ISSN:31-1339/TN
  • 分类号:44-53
摘要
采用激光增材制造(LDM)技术在TC4钛合金基体表面制备了TC4钛合金熔覆层,研究了不同扫描速率下制备的熔覆层的组织、显微硬度以及其在H_2SO_4溶液中的抗电化学腐蚀性能。结果表明:熔覆层的主要物相为α-Ti,且在β晶界附近生成了细针状α′马氏体,组织呈正交状网篮结构;随着扫描速率增大,熔覆层的平均显微硬度先增大后减小,腐蚀电流密度先降低后升高,电荷转移电阻先增大后减小,即其耐蚀性先增强后减弱;当扫描速率为10 mm/s时,熔覆层具有最大的平均显微硬度(390 HV)、最小的腐蚀电流密度(1.2337μA·cm~(-2))、最大的电荷转移电阻(11500Ω·cm~(-2)),此时的熔覆层具有较好的抗电化学腐蚀性能。
        TC4 alloy cladding layer is prepared on TC4 titanium alloy substrate with laser additive manufacturing(LDM) technology, and the microstructure, microhardness and electrochemical corrosion resistance of the cladding layers in sulfuric acid solution are studied. The results show that the main phase of the cladding layers is α-Ti, and the fine acicular α′ martensite is formed near the β grain boundary, showing orthogonal basket-weave microstructure. With the increase of the scanning speed, the average microhardness of the cladding layers increases first and then decreases, the corrosion current density decreases first and then increases, and the charge transfer resistance increases first and then decreases, that is, its corrosion resistance also strengthens first and then weakens. In contrast, when the scanning speed is 10 mm/s, the cladding layer has the highest average microhardness(390 HV), minimum corrosion current density(1.2337 μA·cm~(-2)), and maximum charge transfer resistance(11500 Ω·cm~(-2)), and at this time, the cladding layer has better resistance to electrochemical corrosion.
引文
[1] Yuan G S, Yan L P, Han Y Y. Application progress of titanium alloy[J]. Hot Working Technology, 2017, 46(4): 13-16. 原国森, 兖利鹏, 韩艳艳. 钛合金的应用进展[J]. 热加工工艺, 2017, 46(4): 13-16.
    [2] Cao S, Zhu S M,Lim C V S, et al. The mechanism of aqueous stress-corrosion cracking of α+β titanium alloys[J]. Corrosion Science, 2017, 125: 29-39.
    [3] Attar H, Ehtemam-Haghighi S, Kent D, et al. Recent developments and opportunities in additive manufacturing of titanium-based matrix composites: a review[J]. International Journal of Machine Tools and Manufacture, 2018, 133: 85-102.
    [4] Wang K. Progress in manufacture of titaniumalloy[J]. Materials Review, 2014, 28(S2): 143-146,158. 王科. 钛合金制备方法的研究进展[J]. 材料导报, 2014, 28(S2): 143-146,158.
    [5] Wang S, Cheng X, Tian X J, et al. Effect of TiC addition on microstructures and properties of MC carbide reinforced Inconel625 composites by laser additive manufacturing[J]. Chinese Journal of Lasers, 2018, 45(6): 0602002. 王舒, 程序, 田象军, 等. TiC添加量对激光增材制造MC碳化物增强Inconel625复合材料组织及性能的影响[J]. 中国激光, 2018, 45(6): 0602002.
    [6] Wang Z H, Wang H M, Liu D. Microstructure and mechanical properties of AF1410 ultra-high strength steel using laser additive manufacture technique[J]. Chinese Journal of Lasers, 2016, 43(4): 0403001. 王志会, 王华明, 刘栋. 激光增材制造AF1410超高强度钢组织与力学性能研究[J]. 中国激光, 2016, 43(4): 0403001.
    [7] Li J, Cheng X, Liu D, et al. Phase evolution of a heat-treatable aluminum alloy during laser additive manufacturing[J]. Materials Letters, 2018, 214: 56-59.
    [8] Gu D, Meiners W, Wissenbach K, et al. Laser additive manufacturing of metallic components: materials, processes and mechanisms[J]. International Materials Reviews, 2012, 57(3): 133-164.
    [9] Gasser A, Backes G, Kelbassa I, et al. Laser additive manufacturing[J]. Laser Technik Journal, 2010, 7(2): 58-63.
    [10] Wang T, Zhu Y Y, Zhang S Q, et al. Grain morphology evolution behavior of titanium alloy components during laser melting deposition additive manufacturing[J]. Journal of Alloys and Compounds, 2015, 632: 505-513.
    [11] Zhu Y Y, Li J, Tian X J, et al. Microstructure and mechanical properties of hybrid fabricated Ti-6.5Al-3.5Mo-1.5Zr-0.3Si titanium alloy by laser additive manufacturing[J]. Materials Science and Engineering A, 2014, 607: 427-434.
    [12] Liu J, Wang W X,Cheng X, et al. Oxidation behaviors of Ti60A titanium alloy processed by laser additive manufacturing[J]. Chinese Journal of Lasers, 2018, 45(7): 0702007. 刘金, 王薇茜, 程序, 等. 激光增材制造Ti60A钛合金的氧化行为[J]. 中国激光, 2018, 45(7): 0702007.
    [13] Wang P, Huang Z H, Qi W J, et al. Application and research progress on titanium alloy printed by 3D technology[J]. Material Sciences, 2017, 7(3): 275-282.
    [14] Wang M, Lin X, Huang W. Laser additive manufacture of titanium alloys[J]. Materials Technology, 2016, 31(2): 90-97.
    [15] Fuerst J, Medlin D, Carter M, et al. LASER additive manufacturing of titanium-tantalum alloy structured interfaces for modular orthopedic devices[J]. JOM, 2015, 67(4): 775-780.
    [16] Froes F H, Dutta B. The additive manufacturing (AM) of titanium alloys[J]. Advanced Materials Research, 2014, 1019: 19-25.
    [17] Polmear I, Stjohn D, Nie J F, et al. Titanium alloys[M]//Polmear I, Stjohn D, Nie J F, et al. Light alloys. Netherlands: Elsevier, 2017: 369-460.
    [18] Yao B, Ma X L, Lin F, et al. Microstructure and mechanical properties of Ti-6Al-4V components fabricated by laser micro cladding deposition[J]. Rare Metals, 2015, 34(7): 445-451.
    [19] Zhang S Y, Lin X, Chen J, et al. Influence of processing parameter on the microstructure and forming characterizations of Ti-6Al-4V titanium alloy after laser rapid forming processing[J]. Rare Metal Materials and Engineering, 2007, 36(10): 1839-1843. 张霜银, 林鑫, 陈静, 等. 工艺参数对激光快速成形TC4钛合金组织及成形质量的影响[J]. 稀有金属材料与工程, 2007, 36(10): 1839-1843.
    [20] Zhang Q L. Welding process optimization and research on microstructure and properties FNR laser weld joints of TC4 Titanium alloy[D]. Hohhot: Inner Mongolia University of Technology, 2014. 张启良. TC4钛合金激光焊接工艺优化及接头组织性能研究[D]. 呼和浩特: 内蒙古工业大学, 2014.
    [21] Yao H S, Shi Y S, Zhang W X, et al. Numerical simulation of the temperature field in selective laser melting[J]. Applied Laser, 2007, 27(6): 456-460. 姚化山, 史玉升, 章文献, 等. 金属粉末选区激光熔化成形过程温度场模拟[J]. 应用激光, 2007, 27(6): 456-460.
    [22] Cui Z Y, Yan Y C. Metallurgy and heat treatment[M]. 2nd ed. Beijing: Mechanical Industry Press, 2009. 崔忠圻, 覃耀春. 金属学与热处理[M]. 2版. 北京: 机械工业出版社, 1989.
    [23] Marchenko E S, Baigonakova G A, Gunther V E, et al. Effect of an isothermal action on the functional properties and the shape memory effect parameters of a TiNi(Mo, V) alloy[J]. Russian Metallurgy (Metally), 2017, 2017(4): 267-270.
    [24] Zhu Y Z, Wang S Z, Li B L, et al. Grain growth and microstructure evolution based mechanical property predicted by a modified Hall-Petch equation in hot worked Ni76Cr19AlTiCo alloy[J]. Materials & Design, 2014, 55: 456-462.
    [25] Cao C N. Principles of electrochemistry of corrosion[M]. 3rd ed. Beijing: Chemical Industry Press, 2008. 曹楚南. 腐蚀电化学原理[M]. 3版. 北京: 化学工业出版社, 2008.
    [26] de Souza K A, Robin A. Electrochemical behavior of titanium-tantalum alloys in sulfuric acid solutions[J]. Materials and Corrosion, 2004, 55(11): 853-860.
    [27] Hu P, Song R, Li X J, et al. Influence of concentrations of chloride ions on electrochemical corrosion behavior of titanium-zirconium-molybdenum alloy[J]. Journal of Alloys and Compounds, 2017, 708: 367-372.
    [28] Cao C N, Zhang J Q. An introduction to electrochemical impedance spectroscopy[M]. Beijing: Science Press, 2002. 曹楚南, 张鉴清. 电化学阻抗谱导论[M]. 北京: 科学出版社, 2002.
    [29] Sato N. Basics of corrosion chemistry[M]//Sato N. Green corrosion chemistry and engineering. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011: 1-32.
    [30] Newman R. Pitting corrosion of metals[J]. The Electrochemical Society Interface, 2010, 19(1): 33-38.
    [31] Wang H J, Wang J, Peng X, et al. Corrosion behavior of three titanium alloys in 3.5%NaCl solution[J]. Journal of Chinese Society for Corrosion and Protection, 2015, 35(1): 75-80. 王海杰, 王佳, 彭欣, 等. 钛合金在3.5%NaCl溶液中的腐蚀行为[J]. 中国腐蚀与防护学报, 2015, 35(1): 75-80.
    [32] Pedeferri P. Pitting corrosion[M]//Pedeferri P. Corrosion science and engineering. Cham: Springer, 2018: 207-230.
    [33] Fleck C, Eifler D. Corrosion, fatigue and corrosion fatigue behaviour of metal implant materials, especially titanium alloys[J]. International Journal of Fatigue, 2010, 32(6): 929-935.
    [34] Shoesmith D W, No?l J J. Corrosion of titanium and its alloys[M]//Shoesmith D W, No?l J J. Shreir′s corrosion. Netherlands: Elsevier, 2010: 2042-2052.
    [35] Pourbaix M, Staehle R W. Lectures on electrochemical corrosion[M]. Boston, MA: Springer US, 1973.
    [36] Schmuckler J S. Oxidation reduction electrochemistry[J]. Journal of Chemical Education, 1981, 58(5): 404.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700