用户名: 密码: 验证码:
考虑主应力偏转的采动诱发断层活化机理研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Fault reactive induced by the principal stress rotation for the underground coal mining
  • 作者:赵毅鑫 ; 卢志国 ; 朱广沛 ; 焦振华 ; 王浩 ; 高宁
  • 英文作者:ZHAO Yixin;LU Zhiguo;ZHU Guangpei;JIAO Zhenhua;WANG Hao;GAO Ning;Beijing Key Laboratory for Precise Mining of Intergrown Energy and Resources,China University of Mining and Technology(Beijing);School of Resources and Safety Engineering,China University of Mining and Technology(Beijing);
  • 关键词:应力偏转 ; 库仑破裂应力 ; 剪应力 ; 损伤因子 ; 断层活化
  • 英文关键词:stress rotation;;Coulomb failure stress;;shear stress;;damage factor;;fault reactivation
  • 中文刊名:ZGKD
  • 英文刊名:Journal of China University of Mining & Technology
  • 机构:中国矿业大学(北京)共伴生能源精准开采北京市重点实验室;中国矿业大学(北京)资源与安全工程学院;
  • 出版日期:2018-01-15
  • 出版单位:中国矿业大学学报
  • 年:2018
  • 期:v.47;No.220
  • 基金:国家重点研发计划项目(2016YFC0801401,2016YFC0600708);; 中央高校基本科研业务费项目(2009QM01)
  • 语种:中文;
  • 页:ZGKD201801010
  • 页数:8
  • CN:01
  • ISSN:32-1152/TD
  • 分类号:76-83
摘要
为探讨采动诱发应力场偏转活化断层机理,采用库仑破裂应力增量为断层单元活化判据,引入损伤因子评价断层面活化滑移破坏程度,模拟分析了主应力偏转对不同倾角断层面上应力分布及断层滑移量的影响.研究表明:采动诱发主应力偏转使得沿断层面剪应力增加,而垂直于断层的正应力又受开采卸压和应力偏转影响而减小;断层倾角越大,断层面上剪应力增量对主应力偏转响应越明显;逆断层下盘工作面向断层方向回采时,断层面附近区域底板主应力最先发生偏转,顶板处主应力偏转滞后于煤层和底板,然而顶板中主应力偏转量最大.不同断层倾角断层损伤因子随主应力偏转角变化呈倒"S"型变化.对于倾角分别为15°,30°,45°和60°断层,当最大主应力偏转至垂直断层时,断层面库仑破裂应力和损伤因子均最小;而偏转至平行断层时,断层库仑破裂应力和损伤因子最大,损伤因子最大值约为最小值的8.5~9.2倍.
        In order to investigate the fault slip mechanism under the rotation of principle stress induced by coal excavation,the Coulomb failure stress increment was used as the fault activation criterion,and the damage factor was introduced to evaluate the degree of fault slip failure.The influences of principal stress rotation on stress distribution and fault slip along the fault plane with different dip angles were analyzed with numerical simulation method.The results show that the principal stress deflection induced by mining activities makes the shear stress increase along the fault plane,while the normal stress perpendicular to the fault is reduced by the pressure relief and stress deflection.The larger the fault angle,the more obvious the shear stress increment on the fault plane.When the footwall of reverse fault works in the direction of fault,the principal stress of the bottom plate near the fault plane is deflected first,and theprincipal stress deflection at the roof is lagging behind the coal seam and the bottom plate.The principal stress deflection at the roof lags behind the coal seam and floor.The damage factor of different fault dips changes with deflection angle of principal stress in an inverted " S" shape change.For the dip angle is 15°,30°,45°and 60°of fault,the Coulomb failure stress and damage factor are the smallest when the maximum principal stress is deflected to the vertical fault.When the deflection is parallel to the fault,the Coulomb failure stress and damage factor are the largest,the maximum value of the damage factor is about 8.5 to 9.2 times the minimum.
引文
[1]姜耀东,潘一山,姜福兴,等.我国煤炭开采中的冲击地压机理和防治[J].煤炭学报,2014,39(2):205-213.JIANG Yaodong,PAN Yishan,JIANG Fuxing,et al.State of the art review on mechanism and prevention of coal bumps in China[J].Journal of China Coal Society,2014,39(2):205-213.
    [2]SHEPHERD J,RIXON L K,GRIFFITHS L.Outbursts and geological structures in coal mines:a review[J].International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,1981,18(4):267-283.
    [3]张宏伟,朱峰,韩军,等.冲击地压的地质动力条件与监测预测方[J].煤炭学报,2016,41(3):545-551.ZHANG Hongwei,ZHU Feng,HAN Jun,et al.Geological dynamic conditions and forecast technology for rock bursts[J].Journal of China Coal Society,2016,41(3):545-551.
    [4]姜耀东,赵毅鑫.我国煤矿冲击地压的研究现状:机制、预警与控制[J].岩石力学与工程学报,2015,34(11):2188-2204.JIANG Yaodong,ZHAO Yixin.State of the art:investigation on mechanism forecast and control of coal bumps in China[J].Chinese Journal of Rock Mechanics and Engineering,2015,34(11):2188-2204.
    [5]于广明,谢和平,杨伦,等.采动断层活化分形界面效应的数值模拟研究[J].煤炭学报,1998,23(4):396-400.YU Guangming,XIE Heping,YANG Lun,et al.Numerical simulation of fractal effect induced by activation of fault after coal extraction[J].Journal of China Coal Society,1998,23(4):396-400.
    [6]朱广安,窦林名,刘阳,等.采动影响下断层滑移失稳的动力学分析及数值模拟[J].中国矿业大学学报,2016,45(1):27-33.ZHU Guan’an,DOU Linning,LIU Yang,et al.Dynamic analysis and numerical simulation of fault slip instability induced by coal extraction[J].Journal of China University of Mining and Technology,2016,45(1):27-33.
    [7]王涛,姜耀东,赵毅鑫,等.断层活化与煤岩冲击失稳规律的实验研究[J].采矿与安全工程学报,2014,31(002):180-186.WANG Tao,JIANG Yaodong,ZHAO Yixin,et al.Experimental research on fault reactivation and relating coal bumps[J].Journal of Mining&Safety Engineering,2014,31(002):180-186.
    [8]朱斯陶,姜福兴,KOUAMEK J A,等.深井特厚煤层综放工作面断层活化规律研究[J].岩石力学与工程学报,2016,35(1):50-58.ZHU Sitao,JIANG Fuxing,KOUAMEK J A,et al.Fault activation of fully mechanized caving face in extra-thick coalseam of deep shaft[J].Chinese Journal of Rock Mechanics and Engineering,2016,35(1):50-58.
    [9]蒋金泉,武泉林,曲华.硬厚岩层下逆断层采动应力演化与断层活化特征[J].煤炭学报,2015,40(2):267-277.JIANG Jinquan,WU Quanlin,QU Hua.Characteristic of mining stress evolution and activation of the reverse fault below the hard-thick strata[J].Journal of China Coal Society,2015,40(2):267-277.
    [10]康红普,林健,颜立新,等.山西煤矿矿区井下地应力场分布特征研究[J].地球物理学报,2009,52(7):1782-1792.KANG Hongpu,LIN Jian,YAN Lixin,et al.Study on characteristic of underground in-situ stress distribute in Shanxi coal mining field[J].Chinese Journal of Geophysics,2009,52(7):1782-1792.
    [11]SUORINENI F T,MGUMBWA J J,KAISER P K,et al.Mining of orebodies under shear loading Part 2–failure modes and mechanisms[J].Mining Technology:Transactions of the Institutions of Mining and Metallurgy:Section A,2014:240-249.
    [12]马念杰,赵希栋,赵志强,等.深部采动巷道顶板稳定性分析与控制[J].煤炭学报,2015,40(10):2287-2295.MA Nianjie,ZHAO Xidong,ZHAO Zhiqiang,et al.Stability analysis and control technology of mine roadway roof in deep mining[J].Journal of China Coal Society,2015,40(10):2287-2295.
    [13]王存文,姜福兴,刘金海.构造对冲击地压的控制作用及案例分析[J].煤炭学报,2012,37(2):263-268.WANG Cunwen,JIANG Fuxing,LIU Jinhai.Analysis on control action of geologic structure on rock burst and typical cases[J].Journal of China Coal Society,2012,37(2):263-268.
    [14]王猛,牛誉贺,于永江,等.主应力演化影响下的深部巷道围岩变形破坏特征试验研究[J].岩土工程学报,2016,38(2):237-244.WANG Meng,NIU Yuhe,YU Yongjian,et al.Experimental research on characteristics of deformation and failure of surroundingrock of roadway in deep mine under influence of principal stress evolution[J].Chinese Journal of Geotechnical Engineering,2016,38(2):237-244.
    [15]高峰.地应力分布规律及其对巷道围岩稳定性影响研究[D].徐州:中国矿业大学,2009.GAO Feng.Research on ground stress distribution charcteristics and its effect on roadway surrounding rock stability[D].Xuzhou:China University of Mining&Technology;2009:123.
    [16]汪吉林,李耀民,姜波,等.赵楼井田深部地应力的构造控制机理[J].采矿与安全工程学报,2010,27(4):475-481.WANG Jilin,LI Yaomin,JIANG Bo,et al.Structure control mechanism on deep in-situ stress in Zhaolou mine field[J].Journal of Mining&Safety Engineering,2010,27(4):475-481.
    [17]石耀霖,曹建玲.库仑应力计算及应用过程中若干问题的讨论:以汶川地震为例[J].地球物理学报,2010,53(1):102-110.SHI Yaolin,CAO Jianling.Some aspects in static stress change calculation:case study on Wenchuan earthquake[J].Chinese Journal of Geophysics,2013,35(3):647-655.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700