用户名: 密码: 验证码:
环氧树脂封面层对球墨铸铁管生物膜的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of the epoxy resin coating on the biofilm on ductile cast iron pipes
  • 作者:王若玮 ; 许仕荣 ; 罗志逢 ; 彭宏熙 ; 柳景青 ; 周晓燕 ; 徐军 ; 裘尚德 ; 何晓芳
  • 英文作者:WANG Ruo-wei;XU Shi-rong;LUO Zhi-feng;PENG Hong-xi;LIU Jing-qing;ZHOU Xiaoyan;XU Jun;QIU Shang-de;HE Xiao-fang;College of Civil Engineering,Hunan University;College of Civil Engineering and Architecture, Zhejiang University;Shaoxing Water Environmental Science Institute Co.Ltd;Shaoxing Municipal Water Co., Ltd;
  • 关键词:供水管道 ; 球墨铸铁管 ; 封面层 ; 生物膜 ; 微生物群落
  • 英文关键词:drinking water distribution pipe;;ductile cast iron pipes;;coating;;biofilm;;microbial community
  • 中文刊名:ZGHJ
  • 英文刊名:China Environmental Science
  • 机构:湖南大学土木工程学院;浙江大学建筑工程学院;绍兴水环境科学研究院有限公司;绍兴市制水有限公司;
  • 出版日期:2019-05-20
  • 出版单位:中国环境科学
  • 年:2019
  • 期:v.39
  • 基金:国家自然科学基金资助项目(51678520);; 水体污染控制与治理国家科技重大专项资助项目(2017X07201004)
  • 语种:中文;
  • 页:ZGHJ201905032
  • 页数:7
  • CN:05
  • ISSN:11-2201/X
  • 分类号:224-230
摘要
以实际全比例非循环管道中试平台中水泥砂浆内衬球墨铸铁管为研究对象,通过分析生物膜的理化指标及微生物的群落结构来研究环氧树脂封面层对管道生物膜的影响.研究发现,相比于普通水泥砂浆内衬的球墨铸铁管,增加环氧树脂封面层后的管道不易吸附、沉积各种物质,对生物膜细菌丰度及群落结构均有影响,其管壁生物膜细菌总数为4.01×10~4copies/cm~2,可培养菌数量为1.40×10CFU/cm~2,另外其物种丰度较高而多样性较低.因此增加环氧树脂封面层的水泥内衬球墨铸铁管是一种更为优良的管材.
        The research was carried out in an actual full-scale, non-circulated experimental platform. The effect of Epoxy Resin coating on biofilm on ductile cast iron pipes was studied by analyzing the physicochemical characteristics and microbial community composition of biofilms. The results revealed that the additional epoxy resin coating, compared with cement-mortar lined ductile cast iron pipes, can reduce the attachment of solids and had a positive impact on the microbial abundance and negative impacts on the community composition of biofilms. The total bacteria were 4.01×10~4 copies/cm~2 and heterotrophic bacteria were 1.40×10 CFU/cm~2 in the biofilms. Therefore, Cement-mortar lined ductile cast iron pipes with epoxy resin coating were better in practical applications.
引文
[1]白晓慧,孟明群.城市供水管网水质安全保障技术[M].上海:上海交通大学出版社,2012:21-23.Bai X H, Meng M Q. Technology for water quality assurance of urban water supply pipe network[M]. Shanghai:Shanghai Jiao Tong University Press, 2012:21-23.
    [2]童祯恭,刘遂庆,陶涛.供水管网中管材对水质影响的探讨[J].城市公用事业,2006,20(1):22-24.Tong Z G, Liu S Q, Tao T. Probe into effect of pipe materials for water supply pipeline on water quality[J]. Public Utilities, 2006,20(1):22-24.
    [3]陈凌华,刘秀玲.关于输水管道水泥砂浆衬里的探讨[J].石油工程建设,2005,31(4):58-60.Chen L H, Liu X L. Discussion on cement mortar lining of water pipeline[J]. Petroleum Engineering Construction,2005,31(4):58-60.
    [4] Hall S C. Corrosion protection provided by mortar lining in largediameter water pipelines after many years of service[C]//Pipelines,2013:100-112.
    [5]董学旺.水泥砂浆衬里管道防腐技术[J].油气田地面工程,2000,19(3):43-44.Dong X W. Anticorrosive technology for cement mortar lined pipeline[J]. Oil-Gasfield Surface Engineering, 2000,19(3):43-44.
    [6]林生,程晓如.供水系统二次污染的原因与控制方法[J].净水技术,2008,27(6):24-29.Lin S, Cheng X R. Study on the reasons and the control methods of secondary pollution in water supply system[J]. Water Purification Technology, 2008,27(6):24-29.
    [7]朱伟,信绍广,李宁.球墨铸铁管水泥砂浆内衬水性环氧封面涂层的性能研究[J].供水技术,2012,6(1):50-52.Zhu W, Xin S Q Li N. Development of ductile iron pipe with cementmortar lining and waterborne epoxy seal coating[J]. Water Technology,2016,6(1):50-52.
    [8]李军,李宁,白占顺.水泥砂浆内衬环氧封面层球墨铸铁管[A]//徐维浩.第六届中国城镇水务发展国际研讨会论文集[C].北京:《城镇供水》杂志社,2011:109-112.Li J, Li N, Bai Z S. Epoxy seal of cement mortar linings for ductile iron pipe[A]. Xu W H. Paper colletion for the sixth international conference on China urban water development[C]. Beijing:City and Town Water Supply, 2011:109-112.
    [9]杨羽.水质及流动特征对再生水输配管道壁面侵蚀性能影响的实验研究[D].西安:西安建筑科技大学,2012.Yang Y. Study on the effective of water quality and hydraulic characteristics on the erosiveness of pipe inner wall for the distribution systems of reclaimed water[D]. Xi'an:Xi'an University of Architecture and Technology, 2012.
    [10] Felmming H C, Percival S L, Walker J T. Contamination potential of biofilms in water distribution systems. Water Science&Technology:Water Supply, 2002,2(1):271-280.
    [11] Falkinham III J O. Common features of opportunistic premise plumbing pathogens[J]. International Journal of Environmental Research and Public Health, 2015,12(5):4533-4545.
    [12] Boe-Hansen R, Albrechtsen H, Arvin E, et al. Bulk water phase and biofilm growth in drinking water at low nutrient conditions[J]. Water Research, 2002a,36(18):4477-4486.
    [13] Characklis W G. Bioengineering report:Fouling biofilm development:A process analysis[EB/OL]. 1981,1981-01-01.
    [14] Szewzyk U, Szewzyk R, Manz W, et al. Microbiological safety of drinking water[J]. Annual Reviews in Microbiology,2000,54(1):81-127.
    [15] Hall-Stoodley L, Stoodley P. Biofilm formation and dispersal and the transmission of human pathogens[J]. Trends in microbiology, 2005,13(1):7-10.
    [16] Lechevallier M W. Biofilms in the aquatic environment[M].Cambridge:Royal Soc Chemistry, 1999:220-230.
    [17] Pedersen K. Biofilm development on stainless steel and PVC surfaces in drinking water[J]. Water Research, 1990,24(2):239-243.
    [18]任典君,徐灿华,王荣昌,等,管网内壁生物膜的形成与控制方法研究进展[J].工业水处理,2007,27(12):5-9.Ren D J, Xu C H, Wang R C. Progress of researches on the formation and control of biofilms on pipe walls[J]. Industrial Water Treatment,2007,27(12):5-9.
    [19] Schwartz T,Hoffmann S, Obst U. Formation and bacterial composition of young, natural biofilms obtained from public bank filtered drinking water system[J]. Water Research, 1998,32(9):2787-2797.
    [20] Ren H, Wang W, Liu Y, et al. Pyrosequencing analysis of bacterial communities in biofilms from different pipe materials in a city drinking water distribution system of East China[J]. Applied Microbiology&Biotechnology, 2015,99(24):10713-24.
    [21] American Public Health Association. Standard methods for the examination of water and wastewater.-15th ed[M]. APHA, 1981.
    [22] Lehtola M J, Laxander M, Miettinen I T, et al. The effects of changing water flow velocity on the formation of biofilms and water quality in pilot distribution system consisting of copper or polyethylene pipes[J].Water Research, 2006,40(11):2151-60.
    [23] Weisburg W G, Barns S M, Pelletier D A, et al. 16S ribosomal DNA amplification for phylogenetic study[J]. Journal of Bacteriology,1991,173(2):697-703.
    [24] Muyzer Q De Waal E C, Uitterlinden A G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA[J].Applied&Environmental Microbiology, 1993,59(3):695-700.
    [25] Anderson I C, Parkin P I. Detection of active soil fungi by RT-PCR amplification of precursor rRNA molecules.[J]. Journal of Microbiological Methods,2007,68(2):248-253.
    [26]王薇,任红星,胡震超,等.管材对供水管网生物膜微生物种群多样性的影响[J].环境科学学报,2015,35(3):699-704.Wang W, Ren H X, Hu Z C, et al. Impact of pipe materials on bacterial population diversity in drinking water biofilm[J]. Acta Scientiae Circumstantiae, 2015,35(3):699-704.
    [27] Batte M, Koudjonou B, Laurent P, et al. Biofilm responses to ageing and to a high phosphate load in a bench-scale drinking water system[J]. Water Research, 2003,37(6):1351.
    [28]王薇.管道特征对实际供水管网生物膜微生物种群多样性的影响研究[D].杭州:浙江大学,2015.Wang W. Impact of pipe features on bacterial population diversity of biofilm in urban water supply network[D]. Hangzhou:Zhejiang University, 2015.
    [29]何文杰.安全饮用水保障技术[J].天津建设科技,2005,15(4):27-28.He W J. Technology ensured safely in drinking water[J]. Tianjin Construction Science and Technology,2005,15(4):27-28.
    [30] Nevel S, Roy K D, Nicoboon. Bacterial invasion potential in water is determined by nutrient availability and the indigenous community[J].Ferns Microbiology Ecology, 2013,85(3):593.
    [31] Martiny A C, Jorgensen T M,Albrechtsen H, et al. Long-term succession of structure and diversity of a biofilm formed in a model drinking water distribution system[J]. Applied and Environmental Microbiology, 2003,69(11):6899-6907.
    [32] Wingender J, Flemming H C. Contamination potential of drinking water distribution network biofilms[J]. Water Science&Technology,2004,49(11):277-286.
    [33]邬卓颖,齐枝花,魏博,等.管材、营养元素和温度对模拟给水管网生物膜形成的影响[J].给水排水,2010,36(11):161-164.Wu Z Y, Qi Z H, Wei B. Impact of pipeline material, nutrients andtemperature on bio-film formation in simulated drinking water pipeline reactors[J]. Water&Wastewater Engineering, 2010,36(11):161-164.
    [34]李爽,张晓健.给水管壁生物膜的生长发育及其影响因素[J].中国给水排水,2003,19(z1):49-52.Li S, Zhang X J. Biofilm growth and development on water supply pipe wall and its affecting factors[J]. China Water&Wastewater,2003,19(z1):49-52.
    [35] Jang H J, Choi Y J, Ka J O. Effects of diverse water pipe materials on bacterial communities and water quality in the annular reactor[J].Journal of Microbiology&Biotechnology, 2011,21(2):115.
    [36]张小伟,张雄.混凝土微生物腐蚀的作用机制和研究方法[J].建筑材料学报,2006,9(1):52-58.Zhang X W, Zhang X. Mechanism and research approach of microbial corrosion of concrete[J]. Journal of Building Materials, 2006,9(1):52-58.
    [37] F.M.李.水泥和混凝土化学[M].北京:中国建筑工业出版社,1980.Li F M. Chemistry of cement and concrete[M]. Beijing:China Architecture&Building Press, 1980.
    [38]余康华,崔勇,张子潇,等.水泥砂浆内衬管输配高品质再生水水质变化规律[J].中国给水排水,2017,(13):50-55.Yu K H, Cui Y, Zhang Z X. Analysis of water quality change in reclaimed water conveyed in cement mortar lined iron pipe[J]. China Water&Wastewater, 2017,(13):50-55.
    [39] Lu P P, Chen C,Wang Q F,et al. Phylogenetic diversity of microbial communities in real drinking water distribution systems[J].Biotechnology and Bioprocess Engineering, 2013,18(1):119-124.
    [40]陈曦.给水管道水泥砂浆内衬腐蚀影响因素及其对水质的影响[D].天津:天津大学,2014.Chen X. The influence factors of cement mortar lining corrosion and the impact on water quality in water distribution system[D]. Tianjin:Tianjin University, 2014.
    [41] Douterelo I, Sharpe R L, Boxall J B. Influence of hydraulic regimes on bacterial community structure and composition in an experimental drinking water distribution system[J]. Water Research, 2013,47(2):503-516.
    [42] McCoy S T, VanBriesen J M. Temporal variability of bacterial diversity in a chlorinated drinking water distribution system[J].Journal of Environmental Engineering-Asce,2012,138(7):786-795.
    [43] Poitelon J B, Joyeux M, Welte B, et al. Variations of bacterial 16S rDNA phylotypes prior to and after chlorination for drinking water production from two surface water treatment plants[J]. Journal of Industrial Microbiology&Biotechnology,2010,37(2):117-128.
    [44] Bereschenko L A, Stams A J M, Euverink G J W, et al. Biofilm formation on reverse osmosis membranes is initiated and dominated by Sphingomonas spp[J]. Applied&Environmental Microbiology,2010,76(8):2623.
    [45] Sun W, Liu W, Cui L, et al. Characterization and identification of a chlorine-resistant bacterium,Sphingomonas TS001, from a model drinking water distribution system[J]. Science of the Total Environment, 2013,458-460(3):169-17 5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700