用户名: 密码: 验证码:
蚀变洋壳玄武岩俯冲过程中含碳矿物相变质演化及脱碳作用的研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Metamorphic evolution and decarbonation of the carbonates in the altered oceanic basalt during the subduction process
  • 作者:朱建江 ; 张立飞 ; 吕增
  • 英文作者:ZHU Jian-jiang;ZHANG Li-fei;L Zeng;Key Laboratory of Orogenic Belts and Crustal Evolution, MOE, Peking University;
  • 关键词:俯冲带 ; 蚀变洋壳玄武岩 ; 深部碳循环 ; 地热梯度 ; 脱碳作用
  • 英文关键词:subduction zone;;altered oceanic basalt;;deep carbon cycle;;geotherm;;decarbonation
  • 中文刊名:YSKW
  • 英文刊名:Acta Petrologica Et Mineralogica
  • 机构:北京大学造山带与地壳演化教育部重点实验室;
  • 出版日期:2018-05-25
  • 出版单位:岩石矿物学杂志
  • 年:2018
  • 期:v.37;No.173
  • 基金:国家自然科学基金资助项目(41520104004,41330210,41272069);; 国家重点基础发展研究计划(2015CB856105)~~
  • 语种:中文;
  • 页:YSKW201803005
  • 页数:13
  • CN:03
  • ISSN:11-1966/P
  • 分类号:58-70
摘要
俯冲作用是连接地表系统和地球深部系统的最为关键的地质过程,其对研究地球深部碳循环具有重要的意义。俯冲洋壳岩石圈中的碳主要存储在沉积物、蚀变洋壳玄武岩以及蛇纹岩中。俯冲变质作用过程含碳岩石的变质演化控制着其中含碳矿物相的转变及碳迁移过程。本文选取了蚀变洋壳玄武岩进行相平衡模拟,来研究其含碳矿物相的变质演化过程。计算结果表明,变质玄武岩体系中的碳酸盐矿物之间的转变反应除了受压力控制之外,还受到温度和体系中铁含量的影响。随着压力的升高蚀变玄武岩中碳酸盐矿物会发生方解石/文石-白云石-菱镁矿的转变,但在高压/超高压条件下,温度的升高可以使菱镁矿转变成白云石。碳酸盐矿物中的铁含量受到体系中铁含量的影响,白云石和菱镁矿中的铁含量随着体系中铁含量的增加而增加。在水不饱和条件下,洋壳不管是沿着低温还是高温地热梯度线俯冲到岛弧深度,蚀变玄武岩体系几乎都不发生脱碳作用。然而在水饱和条件下,当洋壳沿着高温以及哥斯达黎加地热梯度线俯冲到岛弧深度时,蚀变玄武岩体系中的碳几乎可以全部脱出去。蚀变玄武岩体系中水含量的增加可以促进体系的脱碳作用。
        Subduction is the key geological process that can link the Earth's surface system with deep Earth's interior. It plays a significant role for the study of deep carbon cycle. Carbon in the subducting lithosphere is present in sediments, altered oceanic crust and serpentinite. The evolution of the carbonate-bearing rocks during subduction metamorphism controls the transformation of the carbonate minerals and carbon transport process. In this study,phase equilibria were modeled for the altered oceanic crust to investigate the metamorphic evolution of the carbonate minerals in the metabasalt. The calculated results indicate that the transformation of carbonate minerals are also affected by temperature and iron content in the metabasalt, in addition of the controlling role of pressure. Phase equilibrium modeling demonstrates that carbonates in the subducted oceanic crust may experience calcite/aragonite-dolomite-magnesite transition with increasing pressure, but under HP/UHP conditions, magnesite can be transformed to dolomite with increasing temperature. The iron content in the carbonates is affected by the iron content in the metabasalt, where the iron content in the dolomite and magnesite will increase with the increasing iron content in the metabasalt. When the altered oceanic crust is under water-unsaturated conditions, almost no decarbonation will happen when the oceanic crust subducts to sub-arc depth along either low temperature or high temperature geotherm. However, under water-saturated conditions, almost all of the carbon in the metabasalt will be released when the oceanic crust subducts to sub-arc depth along high temperature or Costa Rica geotherm. The water content in the metabasalt will facilitate the decarbonation reactions.
引文
Ague J J and Nicolescu S.2014.Carbon dioxide released from subduction zones by fluid-mediated reactions[J].Nature Geoscience,7(5):355~360.
    Alt J C and Teagle D A H.1999.The uptake of carbon during alteration of ocean crust[J].Geochimica et Cosmochimica Acta,63(10):1 527~1 535.
    Bebout G E.1996.Volatile transfer and recycling at convergent margins:mass balance and insights from high P/T metamorphic rocks[J].Subduction top to Bottom:179~193.
    Bebout G E.2007.Metamorphic chemical geodynamics of subduction zones[J].Earth and Planetary Science Letters,260(3~4):373~393.
    Bebout G E,Agard P,Kobayashi K,et al.2013.Devolatilization history and trace element mobility in deeply subducted sedimentary rocks:Evidence from Western Alps HP/UHP suites[J].Chemical Geology,342:1~20.
    Burton M R,Sawyer G M and Granieri D.2013.Deep carbon emissions from volcanoes[J].Reviews in Mineralogy and Geochemistry,75(1):323~354.
    Coggon R and Holland T J B.2002.Mixing properties of phengitic micas and revised garnet-phengite thermobarometers[J].Journal of Metamorphic Geology,20(7):683~696.
    Coggon R M and Teagle D A H.2011.Hydrothermal calcium-carbonate veins reveal past ocean chemistry[J].TrA C Trends in Analytical Chemistry,30(8):1 252~1 268.
    Connolly J A D.1990.Multivariable phase-diagrams-an Algorithm based on generalized thermodynamics[J].American Journal of Science,290(6):666~718.
    Connolly J A D.2005.Computation of phase equilibria by linear programming:A tool for geodynamic modeling and its application to subduction zone decarbonation[J].Earth and Planetary Science Letters,236(1~2):524~541.
    Connolly J A D and Trommsdorff V.1991.Petrogenetic grids for metacarbonate rocks-pressure-temperature phase-diagram projection for mixed-volatile systems[J].Contributions to Mineralogy and Petrology,108(1~2):93~105.
    Dale J,Powell R,White R W,et al.2005.A thermodynamic model for Ca-Na clinoamphiboles in Na2O-CaO-FeO-MgO-Al2O3-SiO 2-H2O-Ofor petrological calculations[J].Journal of Metamorphic Geology,23(8):771~791.
    Dasgupta R.2013.Ingassing,storage,and outgassing of terrestrial carbon through geologic time[J].Reviews in Mineralogy and Geochemistry,75(1):183~229.
    Dasgupta R,Chi H,Shimizu N,et al.2013.Carbon solution and partitioning between metallic and silicate melts in a shallow magma ocean:Implications for the origin and distribution of terrestrial carbon[J].Geochimica et Cosmochimica Acta,102:191~212.
    Dasgupta R and Hirschmann M M.2010.The deep carbon cycle and melting in Earth’s interior[J].Earth and Planetary Science Letters,298(1~2):1~13.
    Edmond J M and Huh Y.2003.Non-steady state carbonate recycling and implications for the evolution of atmospheric PCO[J].Earth and2Planetary Science Letters,216(1~2):125~139.
    Facq S,Daniel I,Montagnac G,et al.2014.In situ Raman study and thermodynamic model of aqueous carbonate speciation in equilibrium with aragonite under subduction zone conditions[J].Geochimica et Cosmochimica Acta,132:375~390.
    Franzolin E,Merlini M,Poli S,et al.2012.The temperature and compositional dependence of disordering in Fe-bearing dolomites[J].A-merican Mineralogist,97(10):1 676~1 684.
    Frezzotti M L,Selverstone J,Sharp Z D,et al.2011.Carbonate dissolution during subduction revealed by diamond-bearing rocks from the Alps[J].Nature Geoscience,4(10):703~706.
    Gorman P J,Kerrick D M and Connolly J A D.2006.Modeling open system metamorphic decarbonation of subducting slabs[J].Geochemistry,Geophysics,Geosystems,7(4).
    Green E,Holland T and Powell R.2007.An order-disorder model for omphacitic pyroxenes in the system jadeite-diopside-hedenbergite-acmite,with applications to eclogitic rocks[J].American Mineralogist,92(7):1 181~1 189.
    Grove T L,Till C B and Krawczynski M J.2012.The role of H2O in subduction zone magmatism[J].Annual Review of Earth and Planetary Sciences,40(1):413~439.
    Guiraud M,Powell R and Rebay G.2001.H2O in metamorphism and unexpected behaviour in the preservation of metamorphic mineral assemblages[J].Journal of Metamorphic Geology,19(4):445~454.
    Hacker B R,Peacock S M,Abers G A,et al.2003.Subduction factory2.Are intermediate-depth earthquakes in subducting slabs linked to metamorphic dehydration reactions?[J].Journal of Geophysical Research:Solid Earth,108(B1).
    Hammouda T,Andrault D,Koga K,et al.2010.Ordering in double carbonates and implications for processes at subduction zones[J].Contributions to Mineralogy and Petrology,161(3):439~450.
    Hayes J M and Waldbauer J R.2006.The carbon cycle and associated redox processes through time[J].Philos Trans R Soc Lond B Biol Sci,361(1 470):931~950.
    Hazen R M and Schiffries C M.2013.Why deep carbon?[J].Reviews in Mineralogy and Geochemistry,75(1):1~6.
    Hilton D R,Fischer T P and Marty B.2002.Noble gases and volatile recycling at subduction zones[J].Reviews in Mineralogy and Geochemistry,47(1):319~370.
    Hirschmann M M.2006.Water,melting,and the deep earth H2O cycle[J].Annu.Rev.Earth Planet.Sci.,34:629~653.
    Holland T,Baker J and Powell R.1998.Mixing properties and activitycomposition relationships of chlorites in the system MgO-FeO-Al2O3-SiO 2-H2O[J].European Journal of Mineralogy,10(3):395~406.
    Holland T J B and Powell R.1998.An internally consistent thermodynamic data set for phases of petrological interest[J].Journal of Metamorphic Geology,16(3):309~343.
    Holland T J B and Powell R.2011.An improved and extended internally consistent thermodynamic dataset for phases of petrological interest,involving a new equation of state for solids[J].Journal of Metamorphic Geology,29(3):333~383.
    Horleston A C and Helffrich G R.2012.Constraining sediment subduction:A converted phase study of the Aleutians and Marianas[J].Earth and Planetary Science Letters,359~360:141~151.
    Javoy M.1997.The major volatile elements of the Earth:Their origin,behavior,and fate[J].Geophysical Research Letters,24(2):177~180.
    Johnston F K B,Turchyn A V and Edmonds M.2011.Decarbonation efficiency in subduction zones:Implications for warm Cretaceous climates[J].Earth and Planetary Science Letters,303(1~2):143~152.
    Kelemen P B and Manning C E.2015.Reevaluating carbon fluxes in subduction zones,what goes down,mostly comes up[J].Proceedings of the National Academy of Sciences,112(30):3 997~4 006.
    Kelley D S,Karson J A,Früh-Green G L,et al.2005.A serpentinitehosted ecosystem:the Lost City hydrothermal field[J].Science,307(5 714):1 428~1 434.
    Kerrick D M and Connolly J A D.2001.Metamorphic devolatilization of subducted marine sediments and the transport of volatiles into the Earth’s mantle[J].Nature,411(6 835):293~296.
    Li J L,Klemd R,Gao J,et al.2014.Compositional zoning in dolomite from lawsonite-bearing eclogite(SW Tianshan,China):Evidence for prograde metamorphism during subduction of oceanic crust[J].American Mineralogist,99(1):206~217.
    Molina J F and Poli S.2000.Carbonate stability and fluid composition in subducted oceanic crust:an experimental study on H2O-CO2-bearing basalts[J].Earth and Planetary Science Letters,176(3~4):295~310.
    Peacock S M.1999.Seismic consequences of warm versus cool subduction metamorphism:Examples from Southwest and Northeast Japan[J].Science,286(5 441):937~939.
    Piccoli F,Vitale Brovarone A,Beyssac O,et al.2016.Carbonation by fluid-rock interactions at high-pressure conditions:Implications for carbon cycling in subduction zones[J].Earth and Planetary Science Letters,445:146~159.
    Plank T and Langmuir C H.1998.The chemical composition of subducting sediment and its consequences for the crust and mantle[J].Chemical Geology,145(3~4):325~394.
    Poli S.2015.Carbon mobilized at shallow depths in subduction zones by carbonatitic liquids[J].Nature Geoscience,8(8):633~636.
    Rosenbauer R J,Thomas B,Bischoff J L,et al.2012.Carbon sequestration via reaction with basaltic rocks:Geochemical modeling and experimental results[J].Geochimica et Cosmochimica Acta,89:116~133.
    Shen Qihan.2009.The recommendation of a systematic list of mineral abbreviations[J].Acta Petrologica et Mineralogia,28(5):495~500(in Chinese with English abstract).
    Skora S,Blundy D J,Brooker A R,et al.2015.Hydrous phase relations and trace element partitioning behaviour in Calcareous Sediments at subduction-zone conditions[J].Journal of Petrology,56(5):953~980.
    Slagle A L and Goldberg D S.2011.Evaluation of ocean crustal Sites 1256 and 504 for long-term CO2sequestration[J].Geophysical Research Letters,38(16).
    Sleep N H and Zahnle K.2001.Carbon dioxide cycling and implications for climate on ancient Earth[J].Journal of Geophysical Research,106(E1):1 373.
    Staudigel H.2003.Hydrothermal alteration processes in the oceanic crust[J].Treatise on Geochemistry,3:511~535.
    Staudigel H and Hart S R.1983.Alteration of basaltic glass:Mechanisms and significance for the oceanic crust-seawater budget[J].Geochimica et Cosmochimica Acta,47(3):337~350.
    Staudigel H,Hart S R,Schmincke H U,et al.1989.Cretaceous ocean crust at DSDP Sites 417 and 418 Carbon uptake from weathering versus loss by magmatic outgassing[J].Geochimica et Cosmochimica acta,53(11):3 091~3 094.
    Sverjensky D A,Harrison B and Azzolini D.2014.Water in the deep Earth:The dielectric constant and the solubilities of quartz and corundum to 60 kb and 1 200℃[J].Geochimica et Cosmochimica Acta,129:125~145.
    Syracuse E M,Keken P E V and Abers G A.2010.The global range of subduction zone thermal models[J].Physics of the Earth and Planetary Interiors,183(1~2):73~90.
    Tao R,Zhang L,Fei Y,et al.2014.The effect of Fe on the stability of dolomite at high pressure:Experimental study and petrological observation in eclogite from southwestern Tianshan,China[J].Geochimica et Cosmochimica Acta,143:253~267.
    Tatsumi Y and Kogiso T.2003.The subduction factory:its role in the evolution of the Earth’s crust and mantle[J].Geological Society,London,Special Publications,219(1):55~80.
    Tian Z L and Wei C J.2013.Metamorphism of ultrahigh-pressure eclogites from the Kebuerte Valley,South Tianshan,NW China:phase equilibria and P-T path[J].Journal of Metamorphic Geology,31(3):281~300.
    Wei C J and Clarke G L.2011.Calculated phase equilibria for MORBcompositions:a reappraisal of the metamorphic evolution of lawsonite eclogite[J].Journal of Metamorphic Geology,29(9):939~952.
    Zheng Y,Chen R,Xu Z,et al.2016.The transport of water in subduction zones[J].Science China Earth Sciences,59(4):651~682.
    沈其韩.2009.推荐一个系统的矿物缩写表[J].岩石矿物学杂志,28(5):495~500.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700