用户名: 密码: 验证码:
基于容器分区处理探究黑麦草生长对喀斯特不同土壤生境和水分的响应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Growth response of Lolium perenne L. under different soil habitats and water conditions based on container partition in a karst area
  • 作者:宋海燕 ; 张静 ; 李素慧 ; 梁千慧 ; 李若溪 ; 陶建平 ; 刘锦春
  • 英文作者:SONG Haiyan;ZHANG Jing;LI Suhui;LIANG Qianhui;LI Ruoxi;TAO Jianping;Liu Jinchun;Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education) ,Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region,School of Life Sciences,Southwest University;
  • 关键词:喀斯特 ; 土壤生境 ; 干旱 ; 黑麦草 ; 生物量
  • 英文关键词:karst;;soil habitat;;drought;;Lolium perenne L.;;biomass
  • 中文刊名:STXB
  • 英文刊名:Acta Ecologica Sinica
  • 机构:三峡库区生态环境教育部重点实验室重庆市三峡库区植物生态与资源重点实验室西南大学生命科学学院;
  • 出版日期:2019-03-08 16:16
  • 出版单位:生态学报
  • 年:2019
  • 期:v.39
  • 基金:国家自然科学基金项目(31500399);; 教育部第49批留学回国人员科研启动基金项目
  • 语种:中文;
  • 页:STXB201910014
  • 页数:9
  • CN:10
  • ISSN:11-2031/Q
  • 分类号:161-169
摘要
为了探究不同水分条件下喀斯特地区分布不均、厚薄不一土壤小生境对禾本科草本植物生长的影响,用3种不同深度的容器(对照深度CK,深土D和浅土S)两两组合为6种复合容器(CK-CK、CK-S、CK-D、D-D、S-D和S-S)以实现容器分区,研究了黑麦草的根系生长、生物量积累及其分配特征。结果表明:1)在水分充足(W_0)条件下,组合了浅土容器和深土容器的处理中,黑麦草的根系生长(根长、根直径、根表面积和根生物量)均低于对照容器(CK-CK),且有浅土容器的组合处理(S-S,S-D,CK-S)受抑制程度大于有深土容器的组合处理(CK-D,D-D);当水分含量降低后,即中水(W_1)和低水(W_2)条件下,有深土容器的组合[D-D和(或)CK-D]根系生长与对照相比显著增加,而有浅土容器的组合[S-S和(或)CK-S]根系生长与对照相比显著降低。2)对比同一处理不同容器分区中黑麦草生长指标发现,在水分充足情况下,深土容器和浅土容器均会抑制植物生长,而当水分减少,S区根系生长被严重抑制,但D区根系增长优势明显。3)水分充足条件下,根冠比未受到显著影响;当水分降低时,组合了深土容器的处理根冠比均有升高的趋势,组合了浅土容器的处理根冠比有降低趋势。由此可见,不同土壤生境带来的物理空间限制会影响植物根系生长和生物量积累与分配,但水分的减少会改变根系生长及生物量积累对不同土壤生境的响应:在水分充足时,土壤物理空间是影响根系生长和生物量积累与分配的主要因子,黑麦草主要发展浅层根系。而当水分减少时,黑麦草根系在浅层土壤中无法获取供给生长代谢活动的足量水分,更倾向于将有限的有机物分配给根,通过根系伸长、表面积和体积增大、直径增粗等策略加强水分吸收,从而增强对干旱的抗逆性,提高对土壤和水分异质性的适应。
        Bare rock, uneven soil thickness, and drought have resulted in a harsh habitat in karst areas. Therefore, plant growth in these areas requires more advanced adaptation strategies. To explore the effect of unique soil habitats on herbaceous plant(Gramineae) growth under different water conditions in a karst area, we selected three container types [control(CK), deep(D), and shallow(S)] for six soil treatments in the following combinations: CK-CK, CK-S, CK-D, D-D, S-D, and S-S. Root growth, biomass accumulation, and root spatial distribution of Lolium perenne L. in different water levels(W_0, W_1, and W_2) were observed. The results showed 1) with sufficient water(W_0), the root length, diameter, surface area, and biomass of L. perenne in the compound containers that contained S or D were lower than that of the control(CK-CK). The degree of inhibition of L. perenne in treatment combined with shallow soil containers(S-S, S-D, CK-S) was greater than that in treatment combined with deep soil containers(CK-D, D-D). The root growth in treatments containing S(S-S, S-D, CK-S) were more inhibited than those in the treatments containing D(CK-D, D-D). With reduced water content(W_1 and W_2), root growth in the compound containers that contained D(D-D and/or CK-D) was significantly higher than that of the control, whereas it was significantly lower in the containers containing S(S-S/CK-S). 2) Comparing root growth in two sides of one compound container, we found that under W_0, both deep and shallow soil inhibited plant growth. Under W_1 and W_2, root growth of the S sides was inhibited severely. However, root growth occurred in the D sides. 3) Under W_0, the root-to-shoot ratio was not affected by soil space. With decrease in the water content, the root-to-shoot ratio increased in the D compound containers, whereas it decreased significantly in the S compound containers. Thus, the physical space limitation of different soil habitats affected plant root growth and biomass accumulation and distribution; however, the decrease of water content could change these responses: with sufficient water, soil physical space was the main factor affecting root growth and biomass accumulation and distribution. Correspondingly, L. perenne mainly developed shallow roots. However, when water was reduced, L. perenne roots could not obtain enough moisture in the shallow soil to supply metabolic growth activity. Therefore, L. perenne generally distributed limited organic matter to the roots and strengthened water absorption through root elongation, surface area and volume increase, and diameter thickening, to enhance drought resistance and improve adaptability to shallow soil and drought.
引文
[1] 刘长成,刘玉国,郭柯.四种不同生活型植物幼苗对喀斯特生境干旱的生理生态适应性.植物生态学报,2011,35(10):1070- 1082.
    [2] 陈洪松,聂云鹏,王克林.岩溶山区水分时空异质性及植物适应机理研究进展.生态学报,2013,33(02):317- 326.
    [3] 张信宝,王世杰,曹建华,王克林,孟天友,白晓永.西南喀斯特山地水土流失特点及有关石漠化的几个科学问题.中国岩溶,2010,29(03):274- 279.
    [4] 李阳兵,侯建筠,谢德体.中国西南岩溶生态研究进展.地理科学,2002,22(3):365- 370.
    [5] 李阳兵,王世杰,谭秋,龙健.喀斯特石漠化的研究现状与存在的问题.地球与环境,2006,34(3):9- 14.
    [6] 凡非得,王克林,熊鹰,宣勇,张伟,岳跃民.西南喀斯特区域水土流失敏感性评价及其空间分异特征.生态学报,2011,31(21):6353- 6362.
    [7] 张信宝,王世杰,白晓永,陈伟燕,张思屿.贵州石漠化空间分布与喀斯特地貌、岩性、降水和人口密度的关系.地球与环境,2013,41(1):1- 6.
    [8] 杨喜田,董惠英,刘明强,汪泽军.太行山荒废地土壤厚度与植被类型关系的研究.河南农业大学学报,1999,33(S1):8- 11.
    [9] 石岩,林琪,位东斌.不同土层厚度条件下旱地小麦花后根系干重及产量变化.干旱地区农业研究,2000,18(2):61- 64.
    [10] 王志强,刘宝元,海春兴.土壤厚度对天然草地植被盖度和生物量的影响.水土保持学报,2007,21(4):164- 167.
    [11] 周运超,罗美.喀斯特小流域土壤厚度的影响因素.山地农业生物学报,2017,36(3):1- 5.
    [12] 欧芷阳,庞世龙,蒙芳,谭长强,郑威,曹艳云,申文辉.模拟喀斯特生境土壤干旱胁迫对蚬木苗木的影响.东北林业大学学报,2017,45(12):16- 21.
    [13] 张川,陈洪松,聂云鹏,张伟,冯腾,王克林.喀斯特地区洼地剖面土壤含水率的动态变化规律.中国生态农业学报,2013,21(10):1225- 1232.
    [14] 郭柯,刘长成,董鸣.我国西南喀斯特植物生态适应性与石漠化治理.植物生态学报,2011,35(10):991- 999.
    [15] 吴竞仑,李永丰,张志勇,刘丽萍.土层深度对稻田杂草种子出苗及生长的影响.江苏农业学报,2003,19(3):170- 173.
    [16] Hess L,de Kroon H.Effects of rooting volume and nutrient availability as an alternative explanation for root self/non-self discrimination.Journal of Ecology,2007,95(2):241- 251.
    [17] Poorter H,Bühler J,van Dusschoten D,Climent J,Postma J A.Pot size matters:a meta-analysis of the effects of rooting volume on plant growth.Functional Plant Biology,2012,39(11):839- 850.
    [18] 牛素贞,宋勤飞,樊卫国,陈正武.干旱胁迫对喀斯特地区野生茶树幼苗生理特性及根系生长的影响.生态学报,2017,37(21):7333- 7341.
    [19] 陈斐,王润元,王鹤龄,赵鸿,张凯,赵福年.干旱胁迫下春小麦干物质积累和分配及其模拟.干旱区研究,2017,34(6):1418- 1425.
    [20] Hodge A.The plastic plant:root responses to heterogeneous supplies of nutrients.New Phytologist,2004,162(1):9- 24.
    [21] 张芸兰,吴少菊.黑麦草的生产性能和发展前景.江西畜牧兽医杂志,1990,(2):49- 51.
    [22] Hsiao T C.Plant Responses to Water Stress.Ann.Rew.Plantphysiology,1973,24:519- 570.
    [23] 翟桂玉.优质饲草生产与利用技术.济南:山东科学技术出版社,2013.
    [24] 张爱良,苗果园,王建平.作物根系与水分的关系.作物研究,1997,(2):4- 6.
    [25] 李洁.植物干旱胁迫适应机制研究进展.广东农业科学,2014,41(19):154- 159.
    [26] 惠宏杉.干旱胁迫对大麦幼苗根系的影响及其与抗旱性关系的研究[D].石河子:石河子大学,2016.
    [27] Takahashi H.Hydrotropism:the current state of our knowledge.Journal of Plant Research,1997,110(2):163- 169.
    [28] 张吴平,刘建宁,李保国.结构与功能反馈机制下根系生长向性模拟.农业工程学报,2009,25(S2):110- 117.
    [29] Dreesen D R,Fenchel G A.Deep-planting techniques to establish riparian vegetation in arid and semiarid regions.Native Plants Journal,2010,11(1):15- 22.
    [30] Oliet J A,Artero F,Cuadros S,Puértolas J,Luna L,Grau J M.Deep planting with shelters improves performance of different stocktype sizes under arid Mediterranean conditions.New Forests,2012,43(5/6):925- 939.
    [31] 杨建设,许育彬.论冬小麦抗旱丰产的根区调控问题.干旱地区农业研究,1997,15(1):50- 57.
    [32] 杨贵羽.土壤水变动下冬小麦根、冠生长动态模型的建立及根、冠动态特性分析[D].北京:中国农业大学,2003.
    [33] von Felten S,Schmid B.Complementarity among species in horizontal versus vertical rooting space.Journal of Plant Ecology,2008,1(1):33- 41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700