用户名: 密码: 验证码:
基于GIS的海河流域农田氮磷肥施用环境风险评价
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Environmental Risk Assessment of Nitrogen and Phosphorus Fertilizer Application in Farmland of Haihe River Basin Based on GIS
  • 作者:王道芸 ; 胡海棠 ; 李存军 ; 刘荣 ; 陈梦露
  • 英文作者:WANG Daoyun;HU Haitang;LI Cunjun;LIU Rong;CHEN Menglu;Faculty of Geomatics,East China University of Technology;Beijing Research Center for Information Technology in Agriculture;
  • 关键词:氮磷肥施用强度 ; 环境安全阈值 ; 环境风险指数 ; 风险评价 ; 海河流域
  • 英文关键词:nitrogen and phosphorus fertilizer application intensity;;environmental safety threshold;;environmental risk index;;risk assessment;;Haihe river basin
  • 中文刊名:SXLX
  • 英文刊名:Journal of Shanxi Agricultural Sciences
  • 机构:东华理工大学测绘工程学院;北京农业信息技术研究中心;
  • 出版日期:2019-03-13
  • 出版单位:山西农业科学
  • 年:2019
  • 期:v.47;No.397
  • 基金:国家重点研发计划(2016YFD0800906-1)
  • 语种:中文;
  • 页:SXLX201903025
  • 页数:8
  • CN:03
  • ISSN:14-1113/S
  • 分类号:113-120
摘要
以海河流域为研究区,基于化肥施用环境安全阈值预测模型及环境风险指数评价模型,对流域35个地级市农田氮磷施用强度及氮磷风险指数进行定量估算,并结合GIS空间分析能力,分析各地级市氮磷肥施用对环境污染的风险等级。结果表明,近11 a来,海河流域平均化肥施用强度为366.16 kg/hm2,是我国生态县化肥施用强度安全标准的1.46倍,是发达国家化肥施用安全标准的1.63倍。2005—2015年,氮、磷肥低度施肥区主要分布在流域西部,中度以上施肥区主要分布在中南部。从风险程度看,50%以上的氮磷肥处于尚安全区及低度风险区,中度以上风险主要分布在北京、天津及河北、河南、山西的个别地级市,但氮、磷肥风险在空间分布上存在显著差异;综合风险空间分布结果显示,90%以上为尚安全区及低度风险区,中度风险分布在朝阳市、天津市和新乡市。整体来看,流域化肥施用环境风险程度逐年降低,这与我国政府制定的较少农田化肥施用量的相关政策有必然的联系。
        Taking Haihe river basin as the research area, based on the environmental safety threshold prediction model and environmental risk index evaluation model for fertilizer application, the intensity and risk index of nitrogen and phosphorus application in the farmland of 35 prefecture-level cities in the basin were quantitatively estimated, and the risk level of environmental pollution caused by nitrogen and phosphorus fertilizer application in each prefecture-level city was analyzed in combination with GIS spatial analysis ability. The results showed that in the past 11 years, the average intensity of fertilizer application in Haihe river basin was 366.16 kg/hm2,which was 1.46 times higher than in the safety standard of chemical fertilizer application intensity in China's ecological county, which was1.63 times higher than the safety standard of chemical fertilizer application in developed countries. From 2005 to 2015, the low-fertilization areas of nitrogen and phosphorus fertilizers were mainly distributed in the western part of the river basin, while the medium-level fertilization areas were mainly distributed in the south-central. From the perspective of risk, more than 50% of the nitrogen and phosphorus fertilizers were in the safe and low-risk areas. The risk areas of medium or above were mainly distributed in Beijing,Tianjin, and some prefecture-level cities in Hebei, Henan and Shanxi, but the spatial distribution of nitrogen and phosphorus fertilizer risk was significantly different. The spatial distribution of comprehensive risks showed that over 90% were still safe areas and low-risk areas, and the medium-risk areas were distributed in Chaoyang city, Tianjin city and Xinxiang city. On the whole, the degree of risk is decreasing year by year, which is inevitably related to the policies formulated by the Chinese government to reduce the application of agricultural fertilizer.
引文
[1]GUO J H,LIU X J,ZHANG Y,et al.Significant acidification in major chinese croplands[J].Science,2010,327:1008-1010.
    [2]LIU X,ZHANG Y,HAN W,et al.Enhanced nitrogen deposition over China[J].Nature,2013,494:459-462.
    [3]张慧霞,周怀平,杨振兴,等.长期施肥对旱地土壤剖面硝态氮分布和累积的影响[J].山西农业科学,2014,42(5):465-469.
    [4]朱明.科学施肥在推进高效环保农业发展中的作用与路径[J].山西农业科学,2014,42(9):984-986.
    [5]陈小锋,揣小明,杨柳燕.中国典型湖区湖泊富营养化现状、历史演变趋势及成因分析[J].生态与农村环境学报,2014,30(4):438-443.
    [6]ZHANG F S,CHEN X P,VITOUSEK P.Chinese agriculture:An experiment for the world[J].Nature,2013,497:33-35.
    [7]罗付香,刘海涛,林超文,等.不同形态氮肥在坡耕地雨季土壤氮素流失动态特征[J].中国土壤与肥料,2015(3):12-20.
    [8]薛泽民,要娟娟,赵萍萍,等.晋南冬小麦-夏玉米轮作体系的氮肥运筹[J].山西农业科学,2012,40(1):44-47.
    [9]李仲春.我国农业面源污染现状及防治对策[J].现代农业科技,2012(14):213-214.
    [10]周萍,范先鹏,何丙辉,等.江汉平原地区潮土水稻田面水磷素流失风险研究[J].水土保持学报,2007,21(4):47-50.
    [11]朱兆良,DAVID NORSE,孙波.中国农业面源污染控制对策[M].北京:中国环境科学出版社,2006.
    [12]邓树元,畅文记,王宏庭,等.冬小麦氮磷钾肥料适宜施用量研究[J].大麦与谷类科学,2012(1):22-24.
    [13]马文奇.山东省作物施肥现状、问题与对策[D].北京:中国农业大学,1999.
    [14]吴良泉,武良,崔振岭,等.中国玉米区域氮磷钾肥推荐用量及肥料配方研究[J].土壤学报,2015,52(4):802-817.
    [15]刘忠,隋晓晨.中国区域化肥利用特征分析[J].资源科学,2008,30(6):822-828.
    [16]孙铖,周华真,陈磊,等.农田化肥氮磷地表径流污染风险评估[J].农业环境科学学报,2017,36(7):1266-1273.
    [17]国家环境保护总局.关于印发《生态县、生态市、生态省建设指标(修订稿)》的通知[EB/OL].[2016-03-01].http://www.gdep.gov.cn/zcfg/bmguizhang/201309/t20130903_154923.html.
    [18]环境保护部.关于印发《国家级生态乡镇申报及管理规定(试行)》的通知[EB/OL].[2016-03-01].http://www.foshanepb.gov.cn/hbzt/stscjhnchb/stsfjs/201301/t20130105_4233653.html.
    [19]赵建勋,程燚.安徽省肥料施用现状与对策[J].安徽农学通报,2011,17(1):102-103.
    [20]刘钦普.中国化肥投入区域差异及环境风险分析[J].中国农业科学,2014,47(18):3596-3605.
    [21]王激清,马文奇.五大因素影响化肥氮磷钾消费比例合理化[J].中国农资,2006(6):14-15.
    [22]董红艳,刘钦普.安徽省农田氮磷化肥施用合理性分析[J].中国土壤与肥料,2018(3):73-78.
    [23]崔玉亭,程序,韩纯儒,等.苏南太湖流域水稻经济生态适宜施氮量研究[J].生态学报,2000,20(4):659-662.
    [24]章明清.土壤-植物系统养分运移与生态经济施肥量研究[D].广州:华南农业大学,2006.
    [25]唐秀美,赵庚星,路庆斌.基于GIS的县域耕地测土配方施肥技术研究[J].农业工程学报,2008,24(7):34-38.
    [26]刘钦普.中国化肥施用强度及环境安全阈值时空变化[J].农业工程学报,2017,33(6):214-221.
    [27]毛小苓,刘阳生.国内外环境风险评价研究进展[J].应用基础与工程科学学报,2003,11(3):266-273.
    [28]HAKANSON L.An ecological risk index for aquatic pollution control:a sedimentological approach[J].Water Research,1980,14(8):975-1001.
    [29]中华人民共和国国家统计局.中国统计年鉴2012[M].北京:中国统计出版社,2012.
    [30]刘钦普.中国化肥面源污染环境风险时空变化[J].农业环境科学学报,2017,36(7):1247-1253.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700