用户名: 密码: 验证码:
木麻黄和桤木离体根瘤和立地土壤的固氮酶与N_2O还原酶活性的研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Nitrogenase and N_2O Reductase Activities of Detached Nodules and Site Soils of Casuarina cunninghamiana and Alnus trabeculosa
  • 作者:马莹玲 ; 朱思佳 ; 曾思如 ; 马红亮 ; 尹云锋 ; 杨柳明 ; 高人
  • 英文作者:MA Ying-ling;ZHU Si-jia;ZENG Si-ru;MA Hong-liang;YIN Yun-feng;YANG Liu-ming;GAO Ren;School of Geographical Science, Fujian Normal University;Cultivation Base of State Key Laboratory of Humid Subtropical Mountain Ecology;Fujian Provincial Key Laboratory for Plant Eco-physiology;
  • 关键词:细枝木麻黄 ; 江南桤木 ; 共生固氮 ; 离体根瘤 ; 立地土壤 ; 固氮酶 ; Nos
  • 英文关键词:Casuarina cunninghamiana;;Alnus trabeculosa;;Symbiotic nitrogen fixation;;Detached nodule;;Site soil;;Nitrogenase;;Nos
  • 中文刊名:RYZB
  • 英文刊名:Journal of Tropical and Subtropical Botany
  • 机构:福建师范大学地理科学学院;湿润亚热带山地生态国家重点实验室培育基地;福建省植物生理生态重点实验室;
  • 出版日期:2019-03-15
  • 出版单位:热带亚热带植物学报
  • 年:2019
  • 期:v.27
  • 基金:国家自然科学基金项目(31570607,31770659,41271282)资助~~
  • 语种:中文;
  • 页:RYZB201902002
  • 页数:8
  • CN:02
  • ISSN:44-1374/Q
  • 分类号:5-12
摘要
为了解非豆科固氮树种的固氮酶和N_2O还原酶(Nos)活性,采用乙炔还原法和乙炔抑制技术对细枝木麻黄(Casuarina cunninghamiana)和江南桤木(Alnus trabeculosa)离体根瘤及立地土壤的两种酶活性进行了研究。结果表明,离体根瘤只在厌氧条件下有固氮酶活性,在好氧条件下有Nos活性。根瘤区根际土和非根瘤区根际土的固氮酶活性在好氧条件大于厌氧条件,Nos活性只表现在厌氧条件下。在好氧条件下,根瘤区根际土和非根瘤区根际土的固氮酶活性无显著差异;根瘤区根际土的Nos活性显著大于非根瘤区根际土。除离体根瘤在好氧条件下不表现固氮酶活性外,细枝木麻黄和桤木的离体根瘤、根瘤区根际土和非根瘤区根际土的固氮酶活性均都大于Nos活性。好氧条件下根瘤区根际土的固氮酶活性与非根瘤区根际土的呈极显著正相关,而厌氧条件下根瘤的固氮酶活性与好氧条件下根瘤区根际土和非根瘤区根际土固氮酶活性、好氧条件下根瘤的Nos活性与厌氧条件下根瘤区根际土和非根瘤区根际土Nos活性均呈极显著负相关。这为研究弗兰克氏菌结瘤植物共生固氮体系对N2O汇强度的影响和调控奠定基础。
        To understand the activities of nitrogenase and N_2O reductase(Nos) for non-legume nitrogen-fixing tree species, the detached nodules, rhizospheric soil in nodule root grown area(RSI) and rhizospheric soil near nodule root grown area(RSN) were collected from Casuarina cunninghamiana and Alnus trabeculosa in Fujian Province, southeastern China, and the nitrogenase and Nos activities were determined by acetylene reduction method and acetylene inhibition technique, respectively. The results showed that the nitrogenase activity of detached nodules could be detected only under anaerobic condition, and the Nos activity only in aerobic condition.The nitrogenase activity in RSI and RSN under aerobic conditions was higher than those under anaerobic condition, and the Nos activities could be detected only under anaerobic condition. In aerobic condition, there was no significant difference in nitrogenase activity between RSI and RSN, while Nos activity of RSI was significantly larger than that of RSN. The nitrogenase activity were greater than Nos activity for the two tree species, except that there were no nitrogenase activity for the detached nodules under aerobic condition. The nitrogenase activity in the RSI under aerobic condition was significantly positively correlated with that in RSN.However, the nitrogenase activity in nodules under anaerobic condition was negatively correlated with that in RSI and RSN under aerobic condition, and the Nos activity in nodules under aerobic condition was also negatively correlated with that in RSI and RSN under anaerobic condition. These would lay a foundation for studying the effect and regulation of symbiotic nitrogen fixation system of tree species nodulated with Frankia on N2 O sink intensity.
引文
[1]LI Z Z,XIE Y Q,WANG Z J,et al.The biological characteristics of actinormycetes Frankia living in roots of Casuarina[J].For Sci,2003,39(S1):139-147.doi:10.11707/j.1001-7488.2003S125.李志真,谢一青,王志洁,等.木麻黄根瘤内生菌生物学特性研究[J].林业科学,2003,39(S1):139-147.doi:10.11707/j.1001-7488.2003S125.
    [2]HANEY C H,LONG S R.Plant flotillins are required for infection by nitrogen-fixing bacteria[J].Proc Nat Acad Sci USA,2010,107(1):478-483.doi:10.1073/pnas.0910081107.
    [3]HUANG Q C,CHEN Q F,LI Z Z.Prospects for nitrogen fixation by azotobacter[J].Sci Technol Rev,1999,17(1):26-29.doi:10.3321/j.issn:1000-7857.1999.01.008.黄群策,陈启锋,李志真.生物固氮研究的前景[J].科技导报,1999,17(1):26-29.doi:10.3321/j.issn:1000-7857.1999.01.008.
    [4]ZHOU Z H,SHI Y L,LIU Z H.Advances on the classification of Frankia[J].Microbiol Bull,1997,24(1):41-44.doi:10.13344/j.microbiol.china.1997.01.011.9.周志宏,石彦林,刘志恒.弗兰克氏菌的分类研究进展[J].微生物学通报,1997,24(1):41-44.doi:10.13344/j.microbiol.china.1997.01.011.
    [5]HAN H.The Analysis of nitrogenous compounds and genes expression of GS and GLba among different protein content materials of Glycine max,Glycine max of high protein content and Glycine soja of high protein content[D].Changchun:Jilin Agricultural University,2014:2-7.韩红.不同蛋白含量大豆氮代谢物及GS和GLba基因表达量分析[D].长春:吉林农业大学,2014:2-7.
    [6]JENSEN B B,BURRIS R H.Nitrous oxide as a substrate and as a competitive inhibitor of nitrogenase[J].Biochemistry,1986,25(5):1083-1088.doi:10.1021/bi00353a021.
    [7]VIETEN B,CONEN F,SETH B,et al.The fate of N2O consumed in soils[J].Biogeosciences,2008,5(1):129-132.doi:10.5194/bg-5-129-2008.
    [8]SAMESHIMA-SAITO R,CHIBA K,MINAMISAWA K.New method of denitrification analysis of Bradyrhizobium field isolates by gas chromatographic determination of 15N-labeled N2[J].Appl Environ Microbiol,2004,70(5):2886-2891.doi:10.1128/AEM.70.5.2886-2891.2004.
    [9]KANEKO T,NAKAMURA Y,SATO S,et al.Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110(Supplement)[J].DNA Res,2002,9(6):225-256.doi:10.1093/dnares/9.6.225.
    [10]WEN Y,CHEN Z,DANNENMANN M,et al.Disentangling gross N2O production and consumption in soil[J].Sci Rep,2016,6:36517.doi:10.1038/srep36517.
    [11]O’HARA G W,DANIEL R M.Rhizobial denitrification:A review[J].Soil Biol Biochem,1985,17(1):1-9.doi:10.1016/0038-0717(85)90082-3.
    [12]NOVA-FRANCO B,í?IGUEZ L P,VALDéS-LóPEZ O,et al.The miR172c-AP2-1 node as a key regulator of the common bean-rhizobia nitrogen fixation symbiosis[J].Plant Physiol,2015,168:273-291.doi:10.1104/pp.114.255547.
    [13]XIAO X.The structure,variation and influencing factors of leguminous plant rhizosphere and nodule endosphere microbiome[D].Yangling:Northwest Agricultural&Forestry University,2017:1-9.肖潇.豆科植物根际和根瘤内生细菌群落结构、变化规律及其影响因素研究[D].杨凌:西北农林科技大学,2017:1-9.
    [14]CHEN W F.Progress and perspective of systematics of rhizobia[J].Microbiol China,2016,43(5):1095-1100.doi:10.13344/j.microbiol.china.150994.陈文峰.根瘤菌系统学研究进展与展望[J].微生物学通报,2016,43(5):1095-1100.doi:10.13344/j.microbiol.china.150994.
    [15]ZHANG X,MA X Y,WANG Q Q,et al.Identification and nitrogen fixation effect of symbiotic Frankia spp.isolated from Casuarina spp.[J].Chin J Ecol,2011,30(9):1975-1981.doi:10.13292/j.1000-4890.2011.0330.张昕,马新颖,王秋芹,等.木麻黄共生固氮菌Frankia的分离鉴定及固氮效应[J].生态学杂志,2011,30(9):1975-1981.doi:10.13292/j.1000-4890.2011.0330.
    [16]LI Z Z.Actinomycetes Frankia in Fujian[M].Beijing:China Environmental Science Press,2006:10-11.李志真.福建弗兰克氏菌(Frankia)研究[M].北京:中国环境科学出版社,2006:10-11
    [17]LU R K.Analysis Method of Soil Agricultural Chemistry[M].Beijing:China Agricultural Science and Technology Press,2000:12-14,127,146-163,289.鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000:12-14,127,146-163,289.
    [18]BELLENGER J P,XU Y,ZHANG X,et al.Possible contribution of alternative nitrogenases to nitrogen fixation by asymbiotic N2-fixing bacteria in soils[J].Soil Biol Biochem,2014,69:413-420.doi:10.1016/j.soilbio.2013.11.015.
    [19]QIN S P,YUAN H J,HU C S,et al.Determination of potential N2O-reductase activity in soil[J].Soil Biol Biochem,2014,70:205-210.doi:10.1016/j.soilbio.2013.12.027.
    [20]ZHAO F Y.Antioxidant protection of aerobic nitrogen-fixing microorganisms[J].Digital World,2017(11):438-438.doi:10.3969/j.issn.1671-8313.2017.11.397.赵方毅.好氧固氮微生物的防氧保护作用[J].数码世界,2017(11):438-438.doi:10.3969/j.issn.1671-8313.2017.11.397.
    [21]RUAN J S,LIU Z H,LIANG L N,et al.Research and Application of Actinomycetes[M].Beijing:Science Press,1990:439-473.阮继生,刘志恒,梁丽糯,等.放线菌研究及应用[M].北京:科学出版社,1990:439-473.
    [22]YANG H F,SHEN S M,ZHONG Y H.Preliminary research on the dynamic process of nitrogen fixation activities of detached nonleguminous nodules[J].Chin J Ecol,1987,6(1):10-13.doi:10.13292/j.1000-4890.1987.0003.杨慧凡,沈善敏,钟玉华.离体赤杨型根瘤固氮活力进程的初步研究[J].生态学杂志,1987,6(1):10-13.doi:10.13292/j.1000-4890.1987.0003.
    [23]M?RTENSSON A M,WITTER E.Influence of various soil amendments on nitrogen-fixing soil microorganisms in a long-term field experiment,with special reference to sewage sludge[J].Soil Biol Biochem,1990,22(7):977-982.doi:10.1016/0038-0717(90)90139-Q.
    [24]ZHANG F Q.The practice of popularization and application of biological nitrogen fixation bacterium reagent[J].Inner Mongolia Sci Technol Econ,2003(12):53-54.doi:10.3969/j.issn.1007-6921.2003.12.026.张福全.生物固氮菌剂的推广应用[J].内蒙古科技与经济,2003(12):53-54.doi:10.3969/j.issn.1007-6921.2003.12.026.
    [25]CHAIA E E,WALL L G,HUSS-DANELL K.Life in soil by the actinorhizal root nodule endophyte Frankia:A review[J].Symbiosis,2010,51(3):201-226.doi:10.1007/s13199-010-0086-y.
    [26]WANG X H.Mechanism of anaerobic nitrogen fixation by aerobic nitrogen fixation microorganisms[J].Middle School Biol,2006,22(1):15.doi:10.3969/j.issn.1003-7586.2006.01.007.王学宏.好氧固氮微生物进行厌氧固氮的机制[J].中学生物学,2006,22(1):15.doi:10.3969/j.issn.1003-7586.2006.01.007.
    [27]BELL L C,FERGUSON S J.Nitric and nitrous oxide reductases are active under aerobic conditions in cells of Thiosphaera pantotropha[J].Biochem J,1991,273:423-427.doi:10.1042/bj2730423.
    [28]LI P,ZHANG S,LIU D L.Study progress of bacterial aerobic denitrification[J].J Microbiol,2005,25(1):60-64.doi:10.3969/j.issn.1005-7021.2005.01.015.李平,张山,刘德立.细菌好氧反硝化研究进展[J].微生物学杂志,2005,25(1):60-64.doi:10.3969/j.issn.1005-7021.2005.01.015.
    [29]BURGIN A J,GROFFMAN P M.Soil O2 controls denitrification rates and N2O yield in a riparian wetland[J].J Geophys Res Biogeosci,2015,117(G1):G01010.doi:10.1029/2011JG001799.
    [30]WANG W,CAI Z C,ZHONG W H,et al.Research advances in aerobic denitrifiers[J].Chin J Appl Ecol,2007,18(11):2618-2625.doi:10.13287/j.1001-9332.2007.0433.王薇,蔡祖聪,钟文辉,等.好氧反硝化菌的研究进展[J].应用生态学报,2007,18(11):2618-2625.doi:10.13287/j.1001-9332.2007.0433.
    [31]ZABLOTOWICZ R M,ESKEW D L,FOCHT D D.Denitrification in Rhizobium[J].Can J Microbiol,1978,24(6):757-760.doi:10.1139/m78-126.
    [32]PRASAD P,BASU S,BEHERA N.A comparative account of the microbiological characteristics of soils under natural forest,grassland and cropfield from Eastern India[J].Plant Soil,1995,175(1):85-91.doi:10.1007/BF02413013.
    [33]ROBERTSON L A,van NIEL E W,TORREMANS R A,et al.Simultaneous nitrification and denitrification in aerobic chemostat cultures of Thiosphaera pantotropha[J].Appl Environ Microbiol,1988,54(11):2812-2818.
    [34]ZOU G Y,ZHANG F S.Denitrification in rhizosphere and N2O emission[J].J China Agric Univ,2002,7(1):77-82.doi:10.3321/j.issn:1007-4333.2002.01.015.邹国元,张福锁.根际反硝化作用与N2O释放[J].中国农业大学学报,2002,7(1):77-82.doi:10.3321/j.issn:1007-4333.2002.01.015.
    [35]HAYATSU M,TAGO K,SAITO M.Various players in the nitrogen cycle:Diversity and functions of the microorganisms involved in nitrification and denitrification[J].Soil Sci Plant Nutri,2008,54(1):33-45.doi:10.1111/j.1747-0765.2007.00195.x.
    [36]ZHAO Z W.The ecological destribution of Frankia in forestry soil[J].J Yunnan Univ(Nat Sci),1990(1):81-83.赵之伟.Frankia菌在林地土壤中的生态分布[J].云南大学学报(自然科学版),1990(1):81-83.
    [37]BAKER D,O’KEEFE D.A modified sucrose fractionation procedure for the isolation of Frankiae from actinorhizal root nodules and soil samples[J].Plant Soil,1984,78(1/2):23-28.doi:10.1007/BF02277837.
    [38]WANG J.Genes and expression of ACC deaminase in nodules and soil of leguminous crops[D].Xi’an:Shaanxi Normal University,2013:4王瑾.豆科作物根瘤与土壤ACC脱氨酶基因及其表达研究[D].西安:陕西师范大学,2013:4.
    [39]NALIN R,NORMAND P,DOMENACH A M.Distribution and N2-fixing activity of Frankia strains in relation to soil depth[J].Physiol Plant,1997,99(4):732-738.doi:10.1111/j.1399-3054.1997.tb05378.x.
    [40]LIU Z,WEI T X,ZHU Q K,et al.Microbes,enzyme activities and nutrient characteristics of rhizosphere and non-rhizosphere soils in forests of Loess Hilly Region[J].Soils,2016,48(4):705-713.doi:10.13758/j.cnki.tr.2016.04.013.刘钊,魏天兴,朱清科,等.黄土丘陵沟壑区典型林地土壤微生物、酶活性和养分特征[J].土壤,2016,48(4):705-713.doi:10.13758/j.cnki.tr.2016.04.013.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700