用户名: 密码: 验证码:
不同温度下可溶有机质对煤电阻率的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The effect of soluble organic matter on coal resistivity at different temperatures
  • 作者:陈立 ; 张英华 ; 侯玮 ; 黄志安 ; 高玉坤 ; 杨锐
  • 英文作者:CHEN Li;ZHANG Yinghua;HOU Wei;HUANG Zhian;GAO Yukun;YANG Rui;Key Laboratory of Ministry of Education for Efficient Mining and Safety of Metall Mines ( University of Science and Technology Beijing);College of Mining and Surveying Engineering,Hebei University of Engineering;
  • 关键词:可溶有机质 ; 温度 ; 煤电阻率 ; 相关性 ; 敏感性
  • 英文关键词:soluble organic matter;;temperature;;coal resistivity;;correlation;;sensitivity
  • 中文刊名:HEBX
  • 英文刊名:Journal of Harbin Institute of Technology
  • 机构:金属矿山高效开采与安全教育部重点实验室(北京科技大学);河北工程大学矿业与测绘工程学院;
  • 出版日期:2018-06-04 17:33
  • 出版单位:哈尔滨工业大学学报
  • 年:2019
  • 期:v.51
  • 基金:国家自然科学基金(51474017);; 河北省自然科学基金(E2014402037)
  • 语种:中文;
  • 页:HEBX201904023
  • 页数:10
  • CN:04
  • ISSN:23-1235/T
  • 分类号:159-168
摘要
煤中可溶有机质能改变煤的孔隙结构,进而影响煤的电阻率,为得到煤中存在的可溶有机质对煤电阻率的影响规律,选取3种不同变质程度的60~80目的原煤煤粒,采用乙酸乙酯作为溶剂来萃取煤中可溶有机质,萃取时间取4、8、12、16、20、24 h,将萃取前后的煤粒制成型煤,在10℃~90℃温度条件下,利用CHI660E型电化学工作站测试煤样的I-V曲线,并计算出电阻率,分析和研究不同温度下煤电阻率受可溶有机质的影响机理和规律.结果表明:在10℃~90℃温度范围内和萃取时间为0~24 h时,煤中可溶有机质的存在可明显提高煤电阻率1.31~1.74倍,煤电阻率随萃取时间的增大(煤中可溶有机质含量减少)的变化符合Sigmoid函数关系,且只会在一定的区间内变化;煤电阻率随温度的升高呈现抛物线规律,萃取前后煤电阻率的比值随温度的升高近似呈现Lorentzian函数分布,在40℃~50℃时出现拐点;可溶有机质对煤电阻率影响的敏感性和相关性随煤变质程度的提高而逐渐减弱.
        To investigate the influence law of soluble organic matter in coal on coal resistivity, briquette coals of three different metamorphic grades made of 60~80 purpose raw coal grains were selected and tested. Ethyl acetate was used as solvent to dissolve soluble organic matter in the coals at 4, 8, 12, 16, 20, 24 h. The coals before and after dissolution were made into sample coals. The current vs. voltage curves of the sample coals were obtained at 10 ℃~90 ℃ using CHI660 E electrochemical workstation and their resistivity were calculated. Based on this, the influence mechanism and rule of the soluble organic matter on coal resistivity at different temperatures were analyzed. Results show that the presence of soluble organic matter in coal increased coal resistivity for 1.31~1.74 times at temperatures from 10 ℃~90 ℃ in 0 ~24 h dissolution time. The rule that coal resistivity increased with the increase of dissolution time conforms to the Sigmoid Function relation, and coal resistivity only changed according to this rule within a certain range. Coal resistivity increasing with temperature rise exhibits parabolic rule. The ratio of coal resistivity before and after dissolution increasing with temperature rise approximately presents Lorentzian distribution with a turning point at 40 ℃~50 ℃. The sensitivity and correlation of the influence of soluble organic matter on coal resistivity gradually weakened with the increase of the degree of coal metamorphism.
引文
[1]MARZEC A. Towards an understanding of the coal structure: a review[J]. Fuel Processing Technology, 2002, 77-78: 25. DOI:10.1016/S0378-3820(02)00045-0
    [2]孙涛, 段毅. 煤系有机质生成烃类中甾烷系列化合物地球化学特征-以高温封闭体系下热模拟实验为例[J].天然气地球科学, 2011, 22( 6): 1082SUN Tao, DUAN Yi.Geochemical characteristics of steranes of coal generated hydrocarbons: a case of high temperature and fined simulated experiment[J]. Natural Gas Geoscience,2011,22 (6):1082
    [3]杨永良,李增华,季淮君,等. 可溶有机质对煤低温氧化的影响[J].煤炭学, 2013, 38(10): 1806YANG Yongliang, LI Zenghua, JI Huaijun, et al. Effect of soluble organic matter on the low-temperature oxidation of coal[J]. Journal of China Coal Society, 2013, 38(10): 1806. DOI:10.13225/j.cnki.jccs.2013.10.024
    [4]杨永良,李增华,季淮君,等.煤中可溶有机质对煤的孔隙结构及甲烷吸附特性影响[J].燃料化学学报, 2013,41(4):385.DOI:10.3969/j.issn.0253-2409.2013.04.001YANG Yongliang, LI Zenghua, JI Huaijun, et al. Effect of soluble organic matter in coal on its pore structure and methane sorption characteristics[J]. Journal of Fuel Chemistry and Technology, 2013, 41(4): 385. DOI:10.3969/j.issn.0253-2409.2013.04.001
    [5]彭英健,李增华,季淮君,等.煤中可溶有机质对瓦斯吸附与解吸特性的影响[J]. 煤炭学报, 2012, 37(9): 1472PENG Yingjian, LI Zenghua, JI Huaijun, et al. Effect of soluble organic matter in coal on gas sorption and desorption characteristics[J]. Journal of China Coal Society, 2012, 37(9): 1472. DOI:10.13225/j.cnki.jccs.2012.09.016
    [6]季淮君. 可溶有机质对煤层瓦斯储运特性影响机理研究[D]. 徐州: 中国矿业大学, 2015JI Huaijun. Mechanism of soluble organic matter influencing on coal gas storage and transport properties[D]. Xuzhou: China University of Mining and Technology, 2015
    [7]潘磊, 肖贤明, 周秦. 可溶有机质对表征页岩储层特性的影响[J].天然气地球科学, 2015, 26(9): 1729PAN Lei, XIAO Xianming, ZHOU Qin. Influence of soluble organic matter on characterization of shale reservoir [J]. Natural Gas Geoscience, 2015, 26(9): 1729. DOI: 10.11764/j.issn.1672-1926.2015.09.1729
    [8]徐龙君, 张代钧, 鲜学福. 煤的电特性和热性质[J]. 煤炭转化, 1996, 19(3): 57XU Longjun, ZHANG Daijun, XIAN Xuefu. The electrical and thermal charters of coal[J]. Coal Conversion, 1996, 19(3): 57
    [9]徐龙君, 刘成伦, 鲜学福. 焦耳热效应和矿物质对煤导电性的影响[J]. 重庆大学学报 (自然科学版), 2000, 23(3): 47XU Longjun, LIU Chenglun, XIAN Xuefu. The effect of joule heat and mineral matter on conductivity of coal[J]. Journal of Chongqing University(Natural Science Edition), 2000, 23(3): 47. DOI: 10.3969/j.issn.1000-582X.2000.03.013
    [10]KHALIL MD I, ISLAM F, AKON E. Gamma and resistivity logs for characterization of Gondwana coal seams at the Northwestern part of Bangladesh[J]. Arabian Journal of Geosciences, 2015, 8(9): 6497. DOI:10.1007/s12517- 014-1687-1
    [11]KARAOULIS M, REVIL A, MAO D. Localization of a coal seam fire using combined self-potential and resistivity data[J]. International Journal of Coal Geology, 2014, 128-129: 109. DOI:10.1016/j.coal.2014.04.011
    [12]RAO C S, MAJUMDER M, ROY J, et al. Delineating coal seams and establishing water tightness by electrical resistivity imaging[J]. Current Science, 2015, 108(3): 427
    [13]DAS P, MOHANTY P R. Resistivity imaging technique to delineate shallow subsurface cavities associated with old coal working: a numerical study[J]. Environ Earth Science, 2016, 661(75):1. DOI: 10.1007/s12665-016-5404-0
    [14]陈鹏, 王恩元, 朱亚飞. 受载煤体电阻率变化规律的实验研究[J].煤炭学报, 2013, 38(4): 548CHEN Peng, WANG Enyuan, ZHU Yafei. Experimental study on resistivity variation regularities of loading coal[J]. Journal of China Coal Society, 2013, 38(4): 548. DOI: 10.3969/j.issn.1006-530X.2008.11.012
    [15]CHEN Peng, WANG Enyuan, CHEN Xuexi, et al. Regularity and mechanism of coal resistivity response with different conductive characteristics in complete stress-strain process[J].International Journal of Mining Science and Technology, 2015, 25(5): 779. DOI: 10.1016/j.ijmst.2015.07.013
    [16]康天慧, 董东, 魏建平, 等. 煤电阻率与其瓦斯含量关系的实验研究[J]. 地质与勘探, 2016, 52(5): 918KANG Tianhui, DONG Dong, WEI Jianping, et al. An experimental study on the relationship between resistivity and gas content of coal[J]. Geology and Exploration, 2016, 52(5): 918. DOI: 10.13712/j.cnki.dzykt.2016.05.012
    [17]陈立, 张英华, 黄志安, 等.不同温度下无烟煤电阻率的层理效应[J].工程科学学报, 2017, 39(7): 988CHEN Li, ZHANG Yinghua, HUANG Zhian, et al. Effects of bedding plane on anthracite coal resistivity under different temperatures[J]. Chinese Journal of Engineering, 2017, 39(7): 988. DOI: 10.13374/j.issn2095-9389.2017.07.003
    [18]周俊, 宗志敏, 魏贤勇.褐煤中可溶有机质的分离和检测研究进展[J].化工进展, 2013, 32(9): 2085ZHOU Jun, ZONG Zhimin, WEI Xianyong. Progress of separation and detection of constituents of soluble compounds from lignite[J].Chemical Industry and Engineering Progress, 2013, 32(9): 2085. DOI:10.3969/j.issn.1000-6613.2013.09.013
    [19]赵乾.表面有机物影响煤体甲烷赋存机制研究及应用[D].北京: 北京科技大学, 2016ZHAO Qian. Study on mechanicsm of methane occurrence with effect of coal surface organics and its application[D]. Beijing: University of Science and Technology Beijing, 2016
    [20]孟磊. 煤电性参数的实验研究[D]. 焦作: 河南理工大学, 2010MENG Lei. Experimental study on the electrical parameters of coal[D]. Jiaozuo: Henan Polytechnic University, 2010
    [21]李富华, 刘德志, 陈俊全, 等. 基于Lorentzian函数的Preisach磁滞模型辨识与验证[J]. 电工技术学报, 2011, 26(2): 1LI Fuhua, LIU Dezhi, CHEN Junquan, et al.Identification of a preisach hysteresis model with lorentzian function and its verification[J].Transactions of China Electrotechnical Society, 2011, 26(2): 1. DOI:10.3969/j.issn.1000-6753. 2011. 02.001
    [22]孟庆俊, 李小孟, 高波, 等. 煤中可溶性有机质荧光光谱特征及其对微量元素赋存的影响[J]. 煤炭学报, 2017, 42(1): 257MENG Qingjun, LI Xiaomeng, GAO Bo, et al. Fluorescence spectrum characteristics of dissolved organic matter and its effect on occurrence of trace elements in coal[J].Journal of China Coal Society, 2017, 42(1): 257. DOI:10.13225/j.cnki.jccs.2016.0522
    [23]ZHOU Wei, XU Zeshui. Asymmetric hesitant fuzzy sigmoid preference relations in the analytic hierarchy process[J]. Information Sciences, 2016, 358-359: 191. DOI:10.1016/j.ins.2016.04.003
    [24]马玉宽, 赵安.基于确定性系数法的鄱阳湖孕螺环境因子敏感性分析[J].自然灾害学报, 2016, 25(5): 65MA Yukuan, ZHAO An. Analysis of sensitivity to environmental factors for snail breedingin Poyang Lake region based on certainty factor model[J]. Journal of Natural Disasters, 2016, 25(5): 65. DOI: 10.13577/j.jnd.2016.0508
    [25]陈立, 张英华, 黄志安, 等. 基于增阻调节的机站风量变化的相关性研究[J]. 矿业研究与开发, 2017, 37(4): 84CHEN Li, ZHANG Yinghua, HUANG Zhian, et al. Correlation study on air volume changes of the machine station based on air regulation by increasing resistance[J]. Mining Research and Development, 2017, 37(4): 84. DOI: 10.13827/j.cnki.kyyk.2017.04.020
    [26]XIAO Jian, ZHAO Yunpeng, DING Man, et al. Composition and structural characteristics of nitrogen-containing species in the soluble organic species of Xianfeng lignite[J]. Journal of Fuel Chemistry and Technology, 2017, 45(4): 385. DOI: 10.1016/S1872- 5813(17)30023-3
    [27]陈向军, 刘军, 王林, 等. 不同变质程度煤的孔径分布及其对吸附常数的影响[J]. 煤炭学报, 2013, 38(2) : 294CHEN Xiangjun, LIU Jun, WANG Lin, et al. Influence of pore size distribution of different metamorphic grade of coalon adsorption constant[J]. Journal of China Coal Society, 2013, 38(2): 294. DOI:10.13225/j.cnki.jccs.2013.02.025
    [28]相建华, 曾凡桂, 梁虎珍, 等. 不同变质程度煤的碳结构特征及其演化机制[J]. 煤炭学报, 2016, 41(6): 1498XIANG Jianhua, ZENG Fangui, LIANG Huzhen, et al. Carbon structure characteristics and evolution mechanism of different rank coals[J]. Journal of China Coal Society, 2016, 41(6): 1498. DOI:10.13225/j.cnki.jccs.2015.1168

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700