用户名: 密码: 验证码:
铜渣转底炉直接还原回收铁锌工艺研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on Recovery of Iron and Zinc from Copper Slag by Direct Reduction Process in Rotary Hearth Furnace
  • 作者:刘占华 ; 陈文亮 ; 丁银贵 ; 曹志成 ; 吴道洪 ; 余文
  • 英文作者:Liu Zhanhua;Chen Wenliang;Ding Yingui;Cao Zhicheng;Wu Daohong;Yu Wen;Beijing Branch of Jiangsu Metallurgical Design Institute Co.,Ltd.;School of Resources and Environmental Engineering,Jiangxi University of Science and Technology;
  • 关键词:铜渣 ; 转底炉 ; 直接还原 ; 金属铁粉
  • 英文关键词:Copper slag;;Rotary hearth furnace;;Direct reduction;;Metallic iron powder
  • 中文刊名:JSKS
  • 英文刊名:Metal Mine
  • 机构:江苏省冶金设计院有限公司北京分公司;江西理工大学资源与环境工程学院;
  • 出版日期:2019-05-15
  • 出版单位:金属矿山
  • 年:2019
  • 期:No.515
  • 基金:江西省自然科学基金资助项目(编号:20171BAB216021);; 中国博士后基金面上资助项目(编号:2018M642591)
  • 语种:中文;
  • 页:JSKS201905029
  • 页数:5
  • CN:05
  • ISSN:34-1055/TD
  • 分类号:188-192
摘要
为解决国内某铜渣的开发利用问题,以兰炭为还原剂、白云石为添加剂,采用模拟转底炉直接还原—磨矿—磁选工艺,对有价元素铁、锌的回收及杂质硫的脱除进行了研究。结果表明:在兰炭用量为25%,白云石用量为10%,还原温度为1 300℃,还原时间为35 min情况下,直接还原过程的锌脱除率为99.14%,可获得ZnO含量为79.59%的氧化锌粉,金属化球团经磨矿、磁选后,获得了铁品位为92.79%、铁回收率为88.12%、硫含量为0.08%的金属铁粉。机理分析表明,铜渣中的铁橄榄石、磁铁矿相大部分已转变为金属铁相,金属铁颗粒明显聚集长大,最大粒度超过100μm,且与脉石矿物等存在清晰平滑的界面,有利于后续磨矿、磁选工序得到高品位的金属铁粉。
        In order to solve the problem of development and utilization of a copper slag in China,the recovery of valuable element iron and zinc,and as well as the removal of impurity sulfur were studied by direct reduction-grinding magnetic separation process in simulated rotary hearth furnace with semi-coke as reducing agent and dolomite as additive. The results showed that the removal rate of zinc in direct reduction process was 99.14%,the ZnO content was 79.59% in zinc oxide powder under the conditions of 25% semi-coke,10% dolomite,1 300 ℃ reduction temperature and 35 minutes reduction time,and the metallic iron powder with 92.79% iron grade and 0.08% sulfur content was obtained with an iron recovery of 88.12%by grinding and magnetic separation from metallized pellets. The mechanism analysis showed that most of the iron-bearing minerals in copper slag had been transformed into metallic iron phases,which presented obvious aggregation and growth. The maximum metal iron particles could reach more than 100 microns,and there was a clear edge between the iron and gangue minerals,which would be propitious to obtain high-grade metallic iron powder by subsequent grinding and magnetic separation processes.
引文
[1]赖祥生,黄红军.铜渣资源化利用技术现状[J].金属矿山,2017(11):205-208.Lai Xiangsheng,Huang Hongjun.Current status of the comprehensive utilization technology of copper slag[J].Metal Mine,2017(11):205-208.
    [2]曹志成,孙体昌,吴道洪,等.转底炉直接还原铜渣回收铁、锌技术[J].材料与冶金学报,2017(1):38-41.Cao Zhicheng,Sun Tichang,Wu Daohong,et al.Technology of recovery of iron and zinc from copper slag by RHF direct reduction[J].Journal of Materials and Metallurgy,2017(1):38-41.
    [3]许冬,春铁军,陈锦安.铜渣高温快速还原焙烧-磁选回收铁的研究[J].矿冶工程,2017(1):89-95.Xu Dong,Chun Tiejun,Chen Jinan.Iron recovery from copper slag by a combined technique of high-temperature reduction roasting and magnetic separation[J].Mining and Metallurgical Engineering,2017(1):89-95.
    [4]朱茂兰,熊家春,胡志彪,等.铜渣中铜铁资源化利用研究进展[J].有色冶金设计与研究,2016(2):15-17Zhu Maolan,Xiong Jiachun,Hu Zhibiao,et al.Research progress in resource utilization of iron and copper in copper smelting slag[J].Nonferrous Metals Engineering&Research,2016(2):15-17.
    [5]赵凯,宫晓然,李杰,等.直接还原法回收铜渣中铁、铜和锌的热力学[J].环境工程学报,2016(5):2638-2646.Zhao Kai,Gong Xiaoran,Li Jie,et al.Thermodynamics of recovering iron,copper,zinc in copper slag by direct reduction method[J].Chinese Journal of Environmental Engineering,2016(5):2638-2646.
    [6]杨慧芬,袁运波,张露,等.铜渣中铁铜组分回收利用现状及建议[J].金属矿山,2012(5):165-168.Yang Huifen,Yuan Yunbo,Zhang Lu,et al.Present situation and proposed method of recycling iron and copper from copper slag[J].Metal Mine,2012(5):165-168.
    [7]廖曾丽,唐谱,张波,等.铜渣在中低温下氧化改性的实验研究[J].中国有色冶金,2012(2):74-78.Liao Zengli,Tang Pu,Zhang Bo,et al.Experimental study on oxidation modification of copper slag middle-low temperature[J].China Nonferrous Metallurgy,2012(2):74-78.
    [8]Tran L,Palacios J,Sanches M.Recovery of molybdenum from copper slag[J].Tetsu to Hagane-Journal of the Iron and Steel Institute of Japan,2012(2):48-54.
    [9]杨椿,余洪.从铜冶炼渣中回收铁的试验研究[J].矿产综合利用,2014(5):55-58.Yang Chun,Yu Hong.Experimental study of recovery of iron from copper smelting slag[J].Multipurpose Utilization of Mineral Resources,2014(5):55-58.
    [10]郑锡联,林鸿汉.某铜冶炼渣选铜尾矿的综合利用研究[J].矿业研究与开发,2015(6):27-29.Zheng Xilian,Lin Honghan.Research on Comprehensive Utilization of Copper Tailings from a Copper Smelting Slag[J].Mining Research and Development,2015(6):27-29.
    [11]秦守婉,申建军,吴春丽.熔渣、铜矿渣在水泥生产中的应用研究[J].硅酸盐通报,2013(4):572-582.Qin Shouwan,Shen Jianjun,Wu Chunli.Utilization of blast furnace slag,copper slag in the production of clinker[J].Bulletin of the Chinese Ceramic Society,2013(4):572-582.
    [12]Brindha D,Nagan S.Utilization of copper slag as a partial replacement of fine aggregate in concrete[J].International Journal of Earth Sciences&Engineering,2013(4):579-585.
    [13]Alpa I,Deveci H,Sungun H.Utilization of flotation wastes of copper slag as raw material in cement production[J].Journal of Hazardous Materials,2008(2/3):390-395.
    [14]刘然,张欣媛,吕庆.转底炉炼铁工艺的发展和应用[J].材料导报,2014(10):36-40.Liu Ran,Zhang Xinyuan,Lyu Qing.Development and application of rotary hearth furnace ironmaking technology[J].Materials Review,2014(10):36-40.
    [15]王爽,倪文,王长龙,等.铜尾渣深度还原回收铁工艺研究[J].金属矿山,2014(3):156-160.Wang Shuang,Ni Wen,Wang Changlong,et al.Study of deep reduction process for iron recovery from copper slag tailings[J].Metal Mine,2014(3):156-160.
    [16]黄希祜.钢铁冶金原理[M].北京:冶金工业出版社,2013.Huang Xihu.Principle of Iron and Steel Metallurgy[M].Beijing:Metallurgical Industry Press,2013.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700