用户名: 密码: 验证码:
基于穿透电极的Electro-peroxone技术降解布洛芬
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effective degradation of ibuprofen by flow-through electro-peroxone process
  • 作者:崔欣欣 ; 林志荣 ; 王会姣 ; 余刚 ; 王玉珏
  • 英文作者:CUI Xin-xin;LIN Zhi-rong;WANG Hui-jiao;YU Gang;WANG Yu-jue;School of Environment, Tsinghua University;Collage of Geographical and Environmental Engineering, Gannan Normal University;
  • 关键词:Elecrtro-peroxone ; 穿透电极 ; 网状玻碳电极 ; 布洛芬
  • 英文关键词:electro-peroxone;;flow through;;reticulated vitreous carbon;;ibuprofen
  • 中文刊名:ZGHJ
  • 英文刊名:China Environmental Science
  • 机构:清华大学环境学院;赣南师范大学地理与环境工程学院;
  • 出版日期:2019-04-20
  • 出版单位:中国环境科学
  • 年:2019
  • 期:v.39
  • 基金:国家重大科技专项(2017ZX07202-001)
  • 语种:中文;
  • 页:ZGHJ201904039
  • 页数:8
  • CN:04
  • ISSN:11-2201/X
  • 分类号:277-284
摘要
利用网状玻碳电极(RVC)作为阴极,构建了一种基于穿透电极的electro-peroxone(E-peroxone)反应器,并系统研究了其对布洛芬的降解性能,考察了电流、流速等因素的影响,进行了能耗计算.结果表明,E-peroxone可以在30min内完全去除初始浓度为2.5mg/L的布洛芬,而电化学氧化和臭氧氧化去除率分别为59%和64%.曝入气体流速为250mL/min,气相臭氧浓度为8mg/L的条件下,电流为100mA,反应溶液流速为300mL/min时, E-peroxone技术去除布洛芬的效率最高,且能耗(EEO)仅为传统臭氧氧化技术的1/7(0.76kWh/m~3-logvs.5.30kWh/m~3-log).提高流速可以强化穿透电极E-peroxone体系中的传质,从而强化布洛芬的去除,并降低EEO.
        By combining conventional ozonation with in situ electro-generation of hydrogen peroxide(H_2O_2) to enhance ozone(O_3)transformation to hydroxyl radicals(×OH), the electro-peroxone(E-peroxone) treatment can significantly enhance the oxidation of ozone-refractory pollutants. A flow-through E-peroxone system was established using a reticulated vitreous carbon(RVC) as the cathode. The effects of main operational parameters(e.g., current and flow rate) on ibuprofen abatement were evaluated systematically. The results showed that the E-peroxone process could completely abate ibuprofen(initial concentration 2.5 mg/L) in a synthetic solution in 30 min, whereas conventional ozonation and electrolysis could only abated 64% and 59% of ibuprofen,respectively. The electrical energy consumption per log-order removal(EEO, kWh/m~3-log) of ibuprofen by ozonation was 5.30 kWh/m~3-log, but was only 0.76 kWh/m~3-log by the E-peroxone process under the conditions of 100 mA, 250 mL/min gas flow rate,8 mg/L ozone and 300 mL/min solution flow rate. Increasing the solution flow rate to increase the kinetics of electrode mass transfer,the rate of ibuprofen abatement could be further enhanced in the flow-through E-peroxone process. These results suggest that flow-through E-peroxone process may provide an effective and energy-efficient alternative for the abatement of refractory pollutants in water treatment.
引文
[1]Daughton C G,Ternes T A.Pharmaceuticals and personal care products in the environment:agents of subtle change[J].Environmental Health Perspectives,1999,107(Suppl 6):907-938.
    [2]Esplugas S,Bila D M,Krause L G,et al.Ozonation and advanced oxidation technologies to remove endocrine disrupting chemicals(EDCs)and pharmaceuticals and personal care products(PPCPs)in water effluents[J].Journal of Hazardous Materials,2007,149(3):631-642.
    [3]Carballa M,Omil F,Lema J M,et al.Behavior of pharmaceuticals,cosmetics and hormones in a sewage treatment plant[J].Water Research,2004,38(12):2918-2926.
    [4]Oller I,Malato S,Sánchez-Pérez J A.Combination of Advanced Oxidation Processes and biological treatments for wastewater decontamination--a review[J].Energy Environmental Protection,2012,409(20):4141-4166.
    [5]赵琦,何小娟,唐翀鹏,等.药物和个人护理用品(PPCPs)处理方法研究进展[J].净水技术,2010,29(4):5-10.Zhao Q,He X,Tang C,et al.Research progress on treatment processes of pharmaceuticals and personal care products(PPCPs)[J].Water Purification Technology,2010,29(4):5-10.
    [6]Rossner A,Snyder S A,Knappe D R U.Removal of emerging contaminants of concern by alternative adsorbents[J].Water Research,2009,43(15):3787-3796.
    [7]Brillas E,Sirés I,Oturan M A.Electro-Fenton process and related electrochemical technologies based on Fenton's reaction chemistry[J].Chemical Reviews,2009,109(12):6570.
    [8]Wang Y,Li X,Zhen L,et al.Electro-Fenton treatment of concentrates generated in nanofiltration of biologically pretreated landfill leachate[J].Journal of Hazardous Materials,2012,229-230(3):115-121.
    [9]袁实.电催化臭氧水处理技术的开发和研究[D].北京:清华大学,2014.Yuan S.The development of a novel Electro-peroxone technology for water and wastewater treatment[D].Beijing:Tsinghua University,2014.
    [10]Klavarioti M,Mantzavinos D,Kassinos D.Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes[J].Environment International,2009,35(2):402-417.
    [11]Matilainen A,Sillanp??M.Removal of natural organic matter from drinking water by advanced oxidation processes[J].Chemosphere,2010,80(4):351-365.
    [12]Huber M M,Canonica S,Gunyoung Park A,et al.Oxidation of pharmaceuticals during ozonation and advanced oxidation processes[J].Environmental Science&Technology,2003,37(5):1016-24.
    [13]Sirés I,Brillas E.Remediation of water pollution caused by pharmaceutical residues based on electrochemical separation and degradation technologies:a review[J].Environment International,2012,40(40):212-229.
    [14]Panizza M,Cerisola G.Direct and mediated anodic oxidation of organic pollutants[J].Chemical Reviews,2009,109(12):6541.
    [15]Moreira F C,Soler J,Fonseca A,et al.Electrochemical advanced oxidation processes for sanitary landfill leachate remediation:Evaluation of operational variables[J].Applied Catalysis BEnvironmental,2016,182:161-171.
    [16]Ji Y,Wang J,Jia J P.Improvement of electrochemical wastewater treatment through mass transfer in a seepage carbon nanotube electrode reactor[J].Environmental Science&Technology,2009,43(10):3796-802.
    [17]Rosal R,Rodríguez A,Perdigónmelón J A,et al.Removal of pharmaceuticals and kinetics of mineralization by O3/H2O2 in a biotreated municipal wastewater[J].Water Research,2008,42(14):3719-3728.
    [18]Lee Y,Gerrity D,Lee M,et al.Prediction of micropollutant elimination during ozonation of municipal wastewater effluents:use of kinetic and water specific information[J].Environmental Science&Technology,2013,47(11):5872-5881.
    [19]Lee Y,Kovalova L,Mcardell C S,et al.Prediction of micropollutant elimination during ozonation of a hospital wastewater effluent[J].Environmental Science&Technology,2013,47(11):5872-5881.
    [20]Quero-Pastor M J,Garrido-Perez M C,Acevedo A,et al.Ozonation of ibuprofen:a degradation and toxicity study[J].Science of the Total Environment,2014,466-467(1):957-964.
    [21]Tekle-R?ttering A,Jewell K S,Reisz E,et al.Ozonation of piperidine,piperazine and morpholine:Kinetics,stoichiometry,product formation and mechanistic considerations[J].Water Research,2016,88(2):960-971.
    [22]李启彬,张爱平,李民,等.O3/H2O2降解垃圾渗滤液浓缩液的氧化特性及光谱解析[J].中国环境科学,2017,37(6):2160-2172.Chen W,Zhang A,Li M,et al.Decomposition of organics in concentrated landfill leachate with ozone/hydrogen peroxide system:Oxidation characteristics and spectroscopic analyses[J].China Environmental Science,2017,37(6):2160-2172.
    [23]Li X,Wang Y,Yuan S,et al.Degradation of the anti-inflammatory drug ibuprofen by electro-peroxone process[J].Water Research,2014,63(7):81-93.
    [24]Bakheet B,Yuan S,Li Z,et al.Electro-peroxone treatment of Orange II dye wastewater[J].Water Research,2013,47(16):6234-6243.
    [25]Yuan S,Li Z,Wang Y.Effective degradation of methylene blue by a novel electrochemically driven process[J].Electrochemistry Communications,2013,29(10):48-51.
    [26]Qiu C,Yuan S,Li X,et al.Investigation of the synergistic effects for p-nitrophenol mineralization by a combined process of ozonation and electrolysis using a boron-doped diamond anode[J].Journal of Hazardous Materials,2014,280(280C):644-653.
    [27]Li Z,Yuan S,Qiu C,et al.Effective degradation of refractory organic pollutants in landfill leachate by electro-peroxone treatment[J].Electrochimica Acta,2013,102(21):174-182.
    [28]Frangos P,Wang H,Shen W,et al.A novel photoelectro-peroxone process for the degradation and mineralization of substituted benzenes in water[J].Chemical Engineering Journal,2016,286:239-248.
    [29]Wang H,Yuan S,Zhan J,et al.Mechanisms of enhanced total organic carbon elimination from oxalic acid solutions by electro-peroxone process[J].Water Research,2015,80:20-29.
    [30]Li Y,Shen W,Fu S,et al.Inhibition of bromate formation during drinking water treatment by adapting ozonation to electro-peroxone process[J].Chemical Engineering Journal,2015,264:322-328.
    [31]Bakheet B,Qiu C,Yuan S,et al.Inhibition of polymer formation in electrochemical degradation of p-nitrophenol by combining electrolysis with ozonation[J].Chemical Engineering Journal,2014,252(5):17-21.
    [32]Wang H,Bakheet B,Yuan S,et al.Kinetics and energy efficiency for the degradation of 1,4-dioxane by electro-peroxone process[J].Journal of Hazardous Materials,2015,294:90-98.
    [33]Yao W,Wang X,Yang H,et al.Removal of pharmaceuticals from secondary effluents by an electro-peroxone process[J].Water Research,2016,88:826-835.
    [34]Gonzálezgarcía J,Bonete P,Expósito E,et al.Characterization of a carbon felt electrode:structural and physical properties[J].Journal of Materials Chemistry,1999,9(2):419-426.
    [35]Gonzálezgarcía J,Vicente Montiel A,Aldaz A,et al.Hydrodynamic behavior of a filter-press electrochemical reactor with carbon felt as a three-dimensional electrode[J].Industrial&Engineering Chemistry Research,1998,37(11):4501-4511.
    [36]Liu Y,Liu H,Zhou Z,et al.Degradation of the common aqueous antibiotic tetracycline using a carbon nanotube electrochemical filter[J].Environmental Science&Technology,2015,49(13):7974-80.
    [37]Gao G,Pan M,Vecitis C D.Effect of oxidation approach on carbon nanotube surface functional groups and electrooxidative filtration performance[J].Journal of Materials Chemistry A,2015,3(14):7575-7582.
    [38]Yue Z R,Jiang W,Wang L,et al.Surface characterization of electrochemically oxidized carbon fibers[J].Carbon,1999,37(11):1785-1796.
    [39]Gao G,Zhang Q,Hao Z,et al.Carbon nanotube membrane stack for flow-through sequential regenerative electro-Fenton[J].Environmental Science&Technology,2015,49(4):2375.
    [40]Friedrich J M,Ponce-De-León C,Reade G W,et al.Reticulated vitreous carbon as an electrode material[J].Journal of Electroanalytical Chemistry,2004,561(1/2):203-217.
    [41]Kuo C H,Li Z,Zappi M E,et al.Kinetics and mechanism of the reaction between ozone and hydrogen peroxide in aqueous solutions[J].Canadian Journal of Chemical Engineering,2010,77(3):473-482.
    [42]Zhou W,Gao J,Ding Y,et al.Drastic enhancement of H2O2 electrogeneration by pulsed current for Ibuprofen degradation:strategy based on decoupling study on H2O2 decomposition pathways[J].Chemical Engineering Journal,2017,338:709-718.
    [43]Liu H,Vecitis C D.Reactive transport mechanism for organic oxidation during electrochemical filtration:Mass-transfer,physical adsorption,and electron-transfer[J].Journal of Physical Chemistry C,2016,116(1):374-383.
    [44]Ambuludi,Loaiza S,Oturan,et al.Kinetic behavior of antiinflammatory drug ibuprofen in aqueous medium;during its degradation by electrochemical advanced oxidation[J].Environmental Science&Pollution Research International,2013,20(4):2381-2389.
    [45]Bolton J R,Bircher K G,Tumas W,et al.Figures-of-merit for the technical development and application of advanced oxidation technologies for both electric-and solar-driven systems(IUPACTechnical Report)[J].Pure&Applied Chemistry,2001,73(4):627-637.
    [46]杨丽娟,胡翔,吴晓楠.Fenton法降解水中布洛芬[J].环境化学,2012,31(12):1896-1900.Yang L,Hu X,Wu X.Degradation of ibuprofen by Fenton oxidation[J].Environmental Chemistry,2012,31(12):1896-1900.
    [47]朱宏,胡翔.铁炭微电解法降解布洛芬的研究[J].环境工程学报,2013,7(5):1735-1738.Zhu H,Hu X.Study on degradation of ibuprofen by iron-carbon micro-electrolysis[J].Chinese Journal of Environmental Engineering,2013,7(5):1735-1738.
    [48]苏海英,王盈霏,王枫亮,等.g-C3N4/TiO2复合材料光催化降解布洛芬的机制[J].中国环境科学,2017,37(1):195-202.Su H,Wang Y,Wang F,et al.Preparation of g-C3N4/TiO2 composites and the mechanism research of the photocatalysis degradation of ibuprofen[J].China Environmental Science,2017,37(1):195-202.
    [49]汤迎,虢清伟,洪澄泱,等.活性污泥去除4种典型药品的研究[J].工业水处理,2016,36(2):63-66.Tang Y,Guo Q,Hong C,et al.Research on the removal of four kinds of typical medicine by activated sludge[J].Industrial Water Treatment,2016,36(2):63-66.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700