用户名: 密码: 验证码:
典型油藏CO_2地质封存中四维地震正演模型研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study of 4D seismic forward model for CO_2sequestration in typical reservoir
  • 作者:李琳 ; 马劲风 ; 王浩璠 ; 谭明友 ; 崔世凌 ; 张云银 ; 曲志鹏
  • 英文作者:LI Ling;MA Jin-fengg;WANG Hao-fang;TAN Ming-you;CUI Shi-ling;ZHANG Yun-yin;QU Zhi-pen;National and Local Joint Engineering Research Center of Carbon Capture and Storage Technology,Department of Geology,Northwest University;SINOPEC Shengli Geophysical Research Institute;
  • 关键词:压力 ; 饱和度 ; 纵波速度 ; 横波速度 ; 正演模型 ; 四维地震
  • 英文关键词:pressure;;saturation;;P-wave velocity;;S-wave velocity;;forward model;;4D seismic
  • 中文刊名:DQWJ
  • 英文刊名:Progress in Geophysics
  • 机构:西北大学地质学系二氧化碳捕集与封存技术国家地方联合工程研究中心;中国石油化工股份有限公司胜利油田分公司物探研究院;
  • 出版日期:2018-01-29 17:00
  • 出版单位:地球物理学进展
  • 年:2018
  • 期:v.33;No.152
  • 基金:国家高技术研究发展计划(863)课题“二氧化碳地质封存关键技术”(2012AA050103)项目资助
  • 语种:中文;
  • 页:DQWJ201806025
  • 页数:11
  • CN:06
  • ISSN:11-2982/P
  • 分类号:197-207
摘要
在CO_2地质封存中,储层中流体饱和度以及地层压力都会随着CO_2的注入而发生变化,相应的纵横波速度也会发生变化.本文首先进行原始状态下横波速度的预测,利用考虑了压力变化的Hertz-Mindlin公式结合Gassmann方程计算横波速度,为了进行对比,又采用不考虑压力变化的Castagna经验公式来进行横波速度的预测.然后,利用这两种方法进行流体替换之后的纵、横波速度的预测,为了体现压力的影响,分别做了(1)利用Hertz-Mindlin公式以及Gassmann方程计算流体替换之后的纵、横波速度;(2)利用Hertz-Mindlin公式以及Gassmann方程计算流体替换之后的纵、横波速度,不考虑压力的变化,即流体替换前后压力不变;(3)利用Hertz-Mindlin公式以及Gassmann方程计算纵、横波速度,仅考虑压力的变化而假设饱和度不变;(4)利用Gastagna经验公式计算流体替换之后的纵、横波速度.在完成流体替换前后纵、横波速度的预测之后,又制作了两层模型以及井模型的AVO正演模型.结果表明,只有同时考虑饱和度以及压力的变化才是最符合实际的,而在该区压力的变化所引起的地震响应的变化远远大于饱和度变化所引起的地震响应.本文的研究区块位于胜利油田正理庄油田高89区,所用资料为该区的全波列测井高94井.
        During the process of CO_2 geological sequestration, fluid saturation and formation pressure in the reservoir can be changed with CO_2 injection. In this paper, S-wave velocity of original reservoir was predicted by using Hertz-Mindlin formula combining Gassmann equation. Because there is parameter of pressure in Hertz-Mindlin formula, in order to make a comparison, the Castagna empirical formula that does not consider pressure change is used to predict the S-wave velocity. Then, P-wave and S-wave velocity after fluid substitution of reservoir can be predicted by using these two methods. In order to understand the influence of pressure and fluid saturation, we made the following respectively:(1) P-wave and S-wave velocity after fluid substitution for reservoir was predicted by using the Hertz-Mindlin formula and Gassmann equation.(2) P-wave and S-wave velocity after fluid substitution for reservoir was predicted by using the Hertz-Mindlin formula and Gassmann equation, but the change of the pressure was not considered which is that the fluid pressure is constant before and after replacement.(3) P-wave and S-wave velocity after fluid substitution for reservoir was predicted by using the Hertz-Mindlin formula and Gassmann equation, the change of the fluid saturation was not considered but the fluid pressure is changed before and after replacement.(4)The Gastagna empirical formula is used to calculate P-wave and S-wave velocity before and after fluid replacement. The AVO model of two-layer model and well model was made after the prediction P-wave and S-wave velocity. Results show that the model considering the change of saturation and pressure is the most practical. The seismic response caused by the pressure change is much greater than that caused by the saturation. The research block of this paper is located in the Gao 89 area of Zhenglizhuang oilfield in Shengli oilfield, well log data of Gao 94 well is used to do our research.
引文
Brown L T. 2002. Integration of rock physics and reservoir simulation for the interpretation of time-lapse seismic data at Weyburn Field, Saskatchewan[Master’s thesis].Golden,CO:Colorado School of Mines.
    Castagna J.P., Batzle M. L., Eastwood R. L.1985. Relationships between compressional-wave and shear-wave velocities in clastic silicate rocks [J]. Geophysics, 50(4): 571-581.
    Castagna J. P., Batzle M. L., Kan T. K.1993. Rock physics—The link between rock properties and AVO response [J]. Offset Dependent Reflectivity—Theoryand Practice of AVO Analysis [A].
    Chadwick R.A., Williams G.A., Williams J.D.O.,et al. 2012. Measuring pressure performance of a large saline aquifer during industrial-scale CO2 injection: The Utsira Sand, Norwegian North Sea [J]. International Journal of Greenhouse Gas Control, 10: 374-388.
    Dvorkin J. P,. Nur A M. 1996. Elasticity of high-porosity sandstones: Theory for two North Sea data sets[J].Geophysics,61(5):1363-1370.
    Gassmann F. 1951. Elastic waves through a packing of spheres [J]. Geophysics, 16(4): 673-682.
    Ivanova A., Kashubin A., Juhojuntti N., et al. 2012. Monitoring and volumetric estimation of injected CO2 using 4D seismic, petrophysical data, core measurements and well logging: a case study at Ketzin, Germany [J]. Geophysical Prospecting, 60(5): 957-973.
    Johnston D. H. 2013. Making a Difference with 4D: Practical applications of time-lapse seismic data.Society of Exploration Geophysicist, SEG Distinguished Instructor Short Course, DISC series, 13:181-183.
    Kuster G. T., Toks?z M. N. 1974. Velocity and attenuation of seismic waves in two-phase media, Part 1, Theoretical formulations [J]. Geophysics, 39(5): 587-606.
    Li Chunqin. 2011. The application of CO 2 miscible flooding technique in the development of low permeability reservoir in Gao 89-1 block [J]. Journal of Oil and Gas Technology(in Chinese), 33(6): 328-329.
    Li Lin, Ma Jinfeng, Wang H F. 2017. Shear wave velocity prediction during CO2-EOR and sequestration in the Gao 89 well block of the Shengli Oilfield [J]. Applied Geophysics, 14(3): 372-380.
    Li L, Ma J F, Zhang X X. 2010. Study of S-wave velocity prediction in sandstones [J]. Progress in Geophysics (in Chinese), 25(3): 1065-1074, doi: 10.3969/j.issn.1004-2903.2010.03.047.
    Li Wen-Cheng, Peng Chang-zi, Yang Hong-fei. 2014. The application of S-wave prediction technology in YB area [J]. Progress in Geophysics (in Chinese), 29 (4): 1695-1700, doi: 10.6038/pg20140427, doi: 10.6038/pg20140427.
    Liu Y. J., Li Sh. J., Wang Y. G., et al. 2016. Reservoir prediction based on shear wave in Sulige Gas Field: China [J]. Oil Geophysical Proepecting (in Chinese), 51(1): 165-173.
    Lumley D. 2010. 4D seismic monitoring of CO2 sequestration [J]. The Leading Edge, 29 (2): 150-155.
    Ma J., Li L., Wang H., et al. 2016. Geophysical monitoring technology for CO2 sequestration [J]. Applied Geophysics, 13(2): 288-306.
    Mindlin R.D, Mindlin R, Mindlin R D. 1949. Compliance of elastic bodies in contact [J]. Journal of Applied Mechanics, 16: 259-268.
    Qiu Gui-qiang, Ling Yun, Fan Hong-hai. 2003. The characteristics and distribution of abnormal pressure in the Paleogene source rocks of Dongying Sag [J]. Petroleum Exploration and Development (in Chinese), 30(3): 71-75.
    Shi Hua. 2008. Numerical simulation research on parameter optimization of CO2 miscible flooding of Gao 89-1 Block in Zheng Lizhuang Oil field [J]. Offshore Oil (in Chinese), 28(1): 68-73.
    Tan Mingyou. 2004. Prediction method of formation pressure in Jiyuan Depression [J]. Oil Geophysical Prospecting (in Chinese), 39(3): 314-318.
    Thomsen L. 1986. Weak elastic anisotropy [J]. Geophysics, 51(10): 1954-1966.
    Wang Z., Cates M E Langan R T. 1998. Seismic monitoring of a CO2 flood in a carbonate reservoir: A rock physics study [J]. Geophysics, 63(5): 1604-1617.
    Xu S., White R.E. 1995. A new velocity model for clay-sand mixtu res1[J]. Geophysical Prospecting, 43(1): 91-118.
    Xu Shiyu, Payne M A. 2009. Modeling elastic properties in carbonate rocks [J]. The Leading Edge, 28(1): 66-74.
    李春芹. 2011. CO2混相驱技术在高89―1块特低渗透油藏开发中的应用[J]. 石油天然气学报, 33(6): 328-329.
    李琳, 马劲风, 张宪旭. 2010. 孔隙裂隙型砂岩横波速度预测方法[J]. 地球物理学进展, 25(3): 1065-1074, doi: 10.3969/j.issn.1004-2903.2010.03.047.
    李文成, 彭嫦姿, 杨鸿飞.2014. 横波预测技术在YB地区的应用[J].地球物理学进展, 29(4): 1695-1700, doi: 10.6038/pg20140427.
    刘雅杰, 李生杰, 王永刚, 等. 2016. 横波预测技术在苏里格气田储层预测中的应用[J].石油地球物理勘探, 51(1): 165-173.
    邱桂强, 凌云, 樊洪海. 2003. 东营凹陷古近系烃源岩超压特征及分布规律[J]. 石油勘探与开发, 30(3): 71-75.
    史华. 2008. 正理庄高89-1区块CO2混相驱参数优化数值模拟研究[J]. 海洋石油, 28(1): 68-73.
    谭明友. 2004. 济阳拗陷地层压力预测方法[J]. 石油地球物理勘探, 39 (3): 314-318.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700